-
Notifications
You must be signed in to change notification settings - Fork 417
/
Copy pathmodels.py
1184 lines (1048 loc) · 45.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#
# Modifications Copyright 2017 Arm Inc. All Rights Reserved.
# Added new model definitions for speech command recognition used in
# the paper: https://arxiv.org/pdf/1711.07128.pdf
#
#
"""Model definitions for simple speech recognition.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.layers.python.layers import layers
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops import variable_scope as vs
def prepare_model_settings(label_count, sample_rate, clip_duration_ms,
window_size_ms, window_stride_ms,
dct_coefficient_count):
"""Calculates common settings needed for all models.
Args:
label_count: How many classes are to be recognized.
sample_rate: Number of audio samples per second.
clip_duration_ms: Length of each audio clip to be analyzed.
window_size_ms: Duration of frequency analysis window.
window_stride_ms: How far to move in time between frequency windows.
dct_coefficient_count: Number of frequency bins to use for analysis.
Returns:
Dictionary containing common settings.
"""
desired_samples = int(sample_rate * clip_duration_ms / 1000)
window_size_samples = int(sample_rate * window_size_ms / 1000)
window_stride_samples = int(sample_rate * window_stride_ms / 1000)
length_minus_window = (desired_samples - window_size_samples)
if length_minus_window < 0:
spectrogram_length = 0
else:
spectrogram_length = 1 + int(length_minus_window / window_stride_samples)
fingerprint_size = dct_coefficient_count * spectrogram_length
return {
'desired_samples': desired_samples,
'window_size_samples': window_size_samples,
'window_stride_samples': window_stride_samples,
'spectrogram_length': spectrogram_length,
'dct_coefficient_count': dct_coefficient_count,
'fingerprint_size': fingerprint_size,
'label_count': label_count,
'sample_rate': sample_rate,
}
def create_model(fingerprint_input, model_settings, model_architecture,
model_size_info, is_training, runtime_settings=None):
"""Builds a model of the requested architecture compatible with the settings.
There are many possible ways of deriving predictions from a spectrogram
input, so this function provides an abstract interface for creating different
kinds of models in a black-box way. You need to pass in a TensorFlow node as
the 'fingerprint' input, and this should output a batch of 1D features that
describe the audio. Typically this will be derived from a spectrogram that's
been run through an MFCC, but in theory it can be any feature vector of the
size specified in model_settings['fingerprint_size'].
The function will build the graph it needs in the current TensorFlow graph,
and return the tensorflow output that will contain the 'logits' input to the
softmax prediction process. If training flag is on, it will also return a
placeholder node that can be used to control the dropout amount.
See the implementations below for the possible model architectures that can be
requested.
Args:
fingerprint_input: TensorFlow node that will output audio feature vectors.
model_settings: Dictionary of information about the model.
model_architecture: String specifying which kind of model to create.
is_training: Whether the model is going to be used for training.
runtime_settings: Dictionary of information about the runtime.
Returns:
TensorFlow node outputting logits results, and optionally a dropout
placeholder.
Raises:
Exception: If the architecture type isn't recognized.
"""
if model_architecture == 'single_fc':
return create_single_fc_model(fingerprint_input, model_settings,
is_training)
elif model_architecture == 'conv':
return create_conv_model(fingerprint_input, model_settings, is_training)
elif model_architecture == 'low_latency_conv':
return create_low_latency_conv_model(fingerprint_input, model_settings,
is_training)
elif model_architecture == 'low_latency_svdf':
return create_low_latency_svdf_model(fingerprint_input, model_settings,
is_training, runtime_settings)
elif model_architecture == 'dnn':
return create_dnn_model(fingerprint_input, model_settings, model_size_info,
is_training)
elif model_architecture == 'cnn':
return create_cnn_model(fingerprint_input, model_settings, model_size_info,
is_training)
elif model_architecture == 'basic_lstm':
return create_basic_lstm_model(fingerprint_input, model_settings,
model_size_info, is_training)
elif model_architecture == 'lstm':
return create_lstm_model(fingerprint_input, model_settings,
model_size_info, is_training)
elif model_architecture == 'gru':
return create_gru_model(fingerprint_input, model_settings, model_size_info,
is_training)
elif model_architecture == 'crnn':
return create_crnn_model(fingerprint_input, model_settings, model_size_info,
is_training)
elif model_architecture == 'ds_cnn':
return create_ds_cnn_model(fingerprint_input, model_settings,
model_size_info, is_training)
else:
raise Exception('model_architecture argument "' + model_architecture +
'" not recognized, should be one of "single_fc", "conv",' +
' "low_latency_conv", "low_latency_svdf",'+
' "dnn", "cnn", "basic_lstm", "lstm",'+
' "gru", "crnn" or "ds_cnn"')
def load_variables_from_checkpoint(sess, start_checkpoint):
"""Utility function to centralize checkpoint restoration.
Args:
sess: TensorFlow session.
start_checkpoint: Path to saved checkpoint on disk.
"""
saver = tf.train.Saver(tf.global_variables())
saver.restore(sess, start_checkpoint)
def create_single_fc_model(fingerprint_input, model_settings, is_training):
"""Builds a model with a single hidden fully-connected layer.
This is a very simple model with just one matmul and bias layer. As you'd
expect, it doesn't produce very accurate results, but it is very fast and
simple, so it's useful for sanity testing.
Here's the layout of the graph:
(fingerprint_input)
v
[MatMul]<-(weights)
v
[BiasAdd]<-(bias)
v
Args:
fingerprint_input: TensorFlow node that will output audio feature vectors.
model_settings: Dictionary of information about the model.
is_training: Whether the model is going to be used for training.
Returns:
TensorFlow node outputting logits results, and optionally a dropout
placeholder.
"""
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
fingerprint_size = model_settings['fingerprint_size']
label_count = model_settings['label_count']
weights = tf.Variable(
tf.truncated_normal([fingerprint_size, label_count], stddev=0.001))
bias = tf.Variable(tf.zeros([label_count]))
logits = tf.matmul(fingerprint_input, weights) + bias
if is_training:
return logits, dropout_prob
else:
return logits
def create_conv_model(fingerprint_input, model_settings, is_training):
"""Builds a standard convolutional model.
This is roughly the network labeled as 'cnn-trad-fpool3' in the
'Convolutional Neural Networks for Small-footprint Keyword Spotting' paper:
http://www.isca-speech.org/archive/interspeech_2015/papers/i15_1478.pdf
Here's the layout of the graph:
(fingerprint_input)
v
[Conv2D]<-(weights)
v
[BiasAdd]<-(bias)
v
[Relu]
v
[MaxPool]
v
[Conv2D]<-(weights)
v
[BiasAdd]<-(bias)
v
[Relu]
v
[MaxPool]
v
[MatMul]<-(weights)
v
[BiasAdd]<-(bias)
v
This produces fairly good quality results, but can involve a large number of
weight parameters and computations. For a cheaper alternative from the same
paper with slightly less accuracy, see 'low_latency_conv' below.
During training, dropout nodes are introduced after each relu, controlled by a
placeholder.
Args:
fingerprint_input: TensorFlow node that will output audio feature vectors.
model_settings: Dictionary of information about the model.
is_training: Whether the model is going to be used for training.
Returns:
TensorFlow node outputting logits results, and optionally a dropout
placeholder.
"""
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
input_frequency_size = model_settings['dct_coefficient_count']
input_time_size = model_settings['spectrogram_length']
fingerprint_4d = tf.reshape(fingerprint_input,
[-1, input_time_size, input_frequency_size, 1])
first_filter_width = 8
first_filter_height = 20
first_filter_count = 64
first_weights = tf.Variable(
tf.truncated_normal(
[first_filter_height, first_filter_width, 1, first_filter_count],
stddev=0.01))
first_bias = tf.Variable(tf.zeros([first_filter_count]))
first_conv = tf.nn.conv2d(fingerprint_4d, first_weights, [1, 1, 1, 1],
'SAME') + first_bias
first_relu = tf.nn.relu(first_conv)
if is_training:
first_dropout = tf.nn.dropout(first_relu, dropout_prob)
else:
first_dropout = first_relu
max_pool = tf.nn.max_pool(first_dropout, [1, 2, 2, 1], [1, 2, 2, 1], 'SAME')
second_filter_width = 4
second_filter_height = 10
second_filter_count = 64
second_weights = tf.Variable(
tf.truncated_normal(
[
second_filter_height, second_filter_width, first_filter_count,
second_filter_count
],
stddev=0.01))
second_bias = tf.Variable(tf.zeros([second_filter_count]))
second_conv = tf.nn.conv2d(max_pool, second_weights, [1, 1, 1, 1],
'SAME') + second_bias
second_relu = tf.nn.relu(second_conv)
if is_training:
second_dropout = tf.nn.dropout(second_relu, dropout_prob)
else:
second_dropout = second_relu
second_conv_shape = second_dropout.get_shape()
second_conv_output_width = second_conv_shape[2]
second_conv_output_height = second_conv_shape[1]
second_conv_element_count = int(
second_conv_output_width * second_conv_output_height *
second_filter_count)
flattened_second_conv = tf.reshape(second_dropout,
[-1, second_conv_element_count])
label_count = model_settings['label_count']
final_fc_weights = tf.Variable(
tf.truncated_normal(
[second_conv_element_count, label_count], stddev=0.01))
final_fc_bias = tf.Variable(tf.zeros([label_count]))
final_fc = tf.matmul(flattened_second_conv, final_fc_weights) + final_fc_bias
if is_training:
return final_fc, dropout_prob
else:
return final_fc
def create_low_latency_conv_model(fingerprint_input, model_settings,
is_training):
"""Builds a convolutional model with low compute requirements.
This is roughly the network labeled as 'cnn-one-fstride4' in the
'Convolutional Neural Networks for Small-footprint Keyword Spotting' paper:
http://www.isca-speech.org/archive/interspeech_2015/papers/i15_1478.pdf
Here's the layout of the graph:
(fingerprint_input)
v
[Conv2D]<-(weights)
v
[BiasAdd]<-(bias)
v
[Relu]
v
[MatMul]<-(weights)
v
[BiasAdd]<-(bias)
v
[MatMul]<-(weights)
v
[BiasAdd]<-(bias)
v
[MatMul]<-(weights)
v
[BiasAdd]<-(bias)
v
This produces slightly lower quality results than the 'conv' model, but needs
fewer weight parameters and computations.
During training, dropout nodes are introduced after the relu, controlled by a
placeholder.
Args:
fingerprint_input: TensorFlow node that will output audio feature vectors.
model_settings: Dictionary of information about the model.
is_training: Whether the model is going to be used for training.
Returns:
TensorFlow node outputting logits results, and optionally a dropout
placeholder.
"""
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
input_frequency_size = model_settings['dct_coefficient_count']
input_time_size = model_settings['spectrogram_length']
fingerprint_4d = tf.reshape(fingerprint_input,
[-1, input_time_size, input_frequency_size, 1])
first_filter_width = 8
first_filter_height = input_time_size
first_filter_count = 186
first_filter_stride_x = 1
first_filter_stride_y = 1
first_weights = tf.Variable(
tf.truncated_normal(
[first_filter_height, first_filter_width, 1, first_filter_count],
stddev=0.01))
first_bias = tf.Variable(tf.zeros([first_filter_count]))
first_conv = tf.nn.conv2d(fingerprint_4d, first_weights, [
1, first_filter_stride_y, first_filter_stride_x, 1
], 'VALID') + first_bias
first_relu = tf.nn.relu(first_conv)
if is_training:
first_dropout = tf.nn.dropout(first_relu, dropout_prob)
else:
first_dropout = first_relu
first_conv_output_width = math.floor(
(input_frequency_size - first_filter_width + first_filter_stride_x) /
first_filter_stride_x)
first_conv_output_height = math.floor(
(input_time_size - first_filter_height + first_filter_stride_y) /
first_filter_stride_y)
first_conv_element_count = int(
first_conv_output_width * first_conv_output_height * first_filter_count)
flattened_first_conv = tf.reshape(first_dropout,
[-1, first_conv_element_count])
first_fc_output_channels = 128
first_fc_weights = tf.Variable(
tf.truncated_normal(
[first_conv_element_count, first_fc_output_channels], stddev=0.01))
first_fc_bias = tf.Variable(tf.zeros([first_fc_output_channels]))
first_fc = tf.matmul(flattened_first_conv, first_fc_weights) + first_fc_bias
if is_training:
second_fc_input = tf.nn.dropout(first_fc, dropout_prob)
else:
second_fc_input = first_fc
second_fc_output_channels = 128
second_fc_weights = tf.Variable(
tf.truncated_normal(
[first_fc_output_channels, second_fc_output_channels], stddev=0.01))
second_fc_bias = tf.Variable(tf.zeros([second_fc_output_channels]))
second_fc = tf.matmul(second_fc_input, second_fc_weights) + second_fc_bias
if is_training:
final_fc_input = tf.nn.dropout(second_fc, dropout_prob)
else:
final_fc_input = second_fc
label_count = model_settings['label_count']
final_fc_weights = tf.Variable(
tf.truncated_normal(
[second_fc_output_channels, label_count], stddev=0.01))
final_fc_bias = tf.Variable(tf.zeros([label_count]))
final_fc = tf.matmul(final_fc_input, final_fc_weights) + final_fc_bias
if is_training:
return final_fc, dropout_prob
else:
return final_fc
def create_low_latency_svdf_model(fingerprint_input, model_settings,
is_training, runtime_settings):
"""Builds an SVDF model with low compute requirements.
This is based in the topology presented in the 'Compressing Deep Neural
Networks using a Rank-Constrained Topology' paper:
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43813.pdf
Here's the layout of the graph:
(fingerprint_input)
v
[SVDF]<-(weights)
v
[BiasAdd]<-(bias)
v
[Relu]
v
[MatMul]<-(weights)
v
[BiasAdd]<-(bias)
v
[MatMul]<-(weights)
v
[BiasAdd]<-(bias)
v
[MatMul]<-(weights)
v
[BiasAdd]<-(bias)
v
This model produces lower recognition accuracy than the 'conv' model above,
but requires fewer weight parameters and, significantly fewer computations.
During training, dropout nodes are introduced after the relu, controlled by a
placeholder.
Args:
fingerprint_input: TensorFlow node that will output audio feature vectors.
The node is expected to produce a 2D Tensor of shape:
[batch, model_settings['dct_coefficient_count'] *
model_settings['spectrogram_length']]
with the features corresponding to the same time slot arranged contiguously,
and the oldest slot at index [:, 0], and newest at [:, -1].
model_settings: Dictionary of information about the model.
is_training: Whether the model is going to be used for training.
runtime_settings: Dictionary of information about the runtime.
Returns:
TensorFlow node outputting logits results, and optionally a dropout
placeholder.
Raises:
ValueError: If the inputs tensor is incorrectly shaped.
"""
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
input_frequency_size = model_settings['dct_coefficient_count']
input_time_size = model_settings['spectrogram_length']
# Validation.
input_shape = fingerprint_input.get_shape()
if len(input_shape) != 2:
raise ValueError('Inputs to `SVDF` should have rank == 2.')
if input_shape[-1].value is None:
raise ValueError('The last dimension of the inputs to `SVDF` '
'should be defined. Found `None`.')
if input_shape[-1].value % input_frequency_size != 0:
raise ValueError('Inputs feature dimension %d must be a multiple of '
'frame size %d', fingerprint_input.shape[-1].value,
input_frequency_size)
# Set number of units (i.e. nodes) and rank.
rank = 2
num_units = 1280
# Number of filters: pairs of feature and time filters.
num_filters = rank * num_units
# Create the runtime memory: [num_filters, batch, input_time_size]
batch = 1
memory = tf.Variable(tf.zeros([num_filters, batch, input_time_size]),
trainable=False, name='runtime-memory')
# Determine the number of new frames in the input, such that we only operate
# on those. For training we do not use the memory, and thus use all frames
# provided in the input.
# new_fingerprint_input: [batch, num_new_frames*input_frequency_size]
if is_training:
num_new_frames = input_time_size
else:
window_stride_ms = int(model_settings['window_stride_samples'] * 1000 /
model_settings['sample_rate'])
num_new_frames = tf.cond(
tf.equal(tf.count_nonzero(memory), 0),
lambda: input_time_size,
lambda: int(runtime_settings['clip_stride_ms'] / window_stride_ms))
new_fingerprint_input = fingerprint_input[
:, -num_new_frames*input_frequency_size:]
# Expand to add input channels dimension.
new_fingerprint_input = tf.expand_dims(new_fingerprint_input, 2)
# Create the frequency filters.
weights_frequency = tf.Variable(
tf.truncated_normal([input_frequency_size, num_filters], stddev=0.01))
# Expand to add input channels dimensions.
# weights_frequency: [input_frequency_size, 1, num_filters]
weights_frequency = tf.expand_dims(weights_frequency, 1)
# Convolve the 1D feature filters sliding over the time dimension.
# activations_time: [batch, num_new_frames, num_filters]
activations_time = tf.nn.conv1d(
new_fingerprint_input, weights_frequency, input_frequency_size, 'VALID')
# Rearrange such that we can perform the batched matmul.
# activations_time: [num_filters, batch, num_new_frames]
activations_time = tf.transpose(activations_time, perm=[2, 0, 1])
# Runtime memory optimization.
if not is_training:
# We need to drop the activations corresponding to the oldest frames, and
# then add those corresponding to the new frames.
new_memory = memory[:, :, num_new_frames:]
new_memory = tf.concat([new_memory, activations_time], 2)
tf.assign(memory, new_memory)
activations_time = new_memory
# Create the time filters.
weights_time = tf.Variable(
tf.truncated_normal([num_filters, input_time_size], stddev=0.01))
# Apply the time filter on the outputs of the feature filters.
# weights_time: [num_filters, input_time_size, 1]
# outputs: [num_filters, batch, 1]
weights_time = tf.expand_dims(weights_time, 2)
outputs = tf.matmul(activations_time, weights_time)
# Split num_units and rank into separate dimensions (the remaining
# dimension is the input_shape[0] -i.e. batch size). This also squeezes
# the last dimension, since it's not used.
# [num_filters, batch, 1] => [num_units, rank, batch]
outputs = tf.reshape(outputs, [num_units, rank, -1])
# Sum the rank outputs per unit => [num_units, batch].
units_output = tf.reduce_sum(outputs, axis=1)
# Transpose to shape [batch, num_units]
units_output = tf.transpose(units_output)
# Appy bias.
bias = tf.Variable(tf.zeros([num_units]))
first_bias = tf.nn.bias_add(units_output, bias)
# Relu.
first_relu = tf.nn.relu(first_bias)
if is_training:
first_dropout = tf.nn.dropout(first_relu, dropout_prob)
else:
first_dropout = first_relu
first_fc_output_channels = 256
first_fc_weights = tf.Variable(
tf.truncated_normal([num_units, first_fc_output_channels], stddev=0.01))
first_fc_bias = tf.Variable(tf.zeros([first_fc_output_channels]))
first_fc = tf.matmul(first_dropout, first_fc_weights) + first_fc_bias
if is_training:
second_fc_input = tf.nn.dropout(first_fc, dropout_prob)
else:
second_fc_input = first_fc
second_fc_output_channels = 256
second_fc_weights = tf.Variable(
tf.truncated_normal(
[first_fc_output_channels, second_fc_output_channels], stddev=0.01))
second_fc_bias = tf.Variable(tf.zeros([second_fc_output_channels]))
second_fc = tf.matmul(second_fc_input, second_fc_weights) + second_fc_bias
if is_training:
final_fc_input = tf.nn.dropout(second_fc, dropout_prob)
else:
final_fc_input = second_fc
label_count = model_settings['label_count']
final_fc_weights = tf.Variable(
tf.truncated_normal(
[second_fc_output_channels, label_count], stddev=0.01))
final_fc_bias = tf.Variable(tf.zeros([label_count]))
final_fc = tf.matmul(final_fc_input, final_fc_weights) + final_fc_bias
if is_training:
return final_fc, dropout_prob
else:
return final_fc
def create_dnn_model(fingerprint_input, model_settings, model_size_info,
is_training):
"""Builds a model with multiple hidden fully-connected layers.
model_size_info: length of the array defines the number of hidden-layers and
each element in the array represent the number of neurons
in that layer
"""
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
fingerprint_size = model_settings['fingerprint_size']
label_count = model_settings['label_count']
num_layers = len(model_size_info)
layer_dim = [fingerprint_size]
layer_dim.extend(model_size_info)
flow = fingerprint_input
tf.summary.histogram('input', flow)
for i in range(1, num_layers + 1):
with tf.variable_scope('fc'+str(i)):
W = tf.get_variable('W', shape=[layer_dim[i-1], layer_dim[i]],
initializer=tf.contrib.layers.xavier_initializer())
tf.summary.histogram('fc_'+str(i)+'_w', W)
b = tf.get_variable('b', shape=[layer_dim[i]])
tf.summary.histogram('fc_'+str(i)+'_b', b)
flow = tf.matmul(flow, W) + b
flow = tf.nn.relu(flow)
if is_training:
flow = tf.nn.dropout(flow, dropout_prob)
weights = tf.get_variable('final_fc', shape=[layer_dim[-1], label_count],
initializer=tf.contrib.layers.xavier_initializer())
bias = tf.Variable(tf.zeros([label_count]))
logits = tf.matmul(flow, weights) + bias
if is_training:
return logits, dropout_prob
else:
return logits
def create_cnn_model(fingerprint_input, model_settings, model_size_info,
is_training):
"""Builds a model with 2 convolution layers followed by a linear layer and
a hidden fully-connected layer.
model_size_info: defines the first and second convolution parameters in
{number of conv features, conv filter height, width, stride in y,x dir.},
followed by linear layer size and fully-connected layer size.
"""
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
input_frequency_size = model_settings['dct_coefficient_count']
input_time_size = model_settings['spectrogram_length']
fingerprint_4d = tf.reshape(fingerprint_input,
[-1, input_time_size, input_frequency_size, 1])
first_filter_count = model_size_info[0]
first_filter_height = model_size_info[1] #time axis
first_filter_width = model_size_info[2] #frequency axis
first_filter_stride_y = model_size_info[3] #time axis
first_filter_stride_x = model_size_info[4] #frequency_axis
second_filter_count = model_size_info[5]
second_filter_height = model_size_info[6] #time axis
second_filter_width = model_size_info[7] #frequency axis
second_filter_stride_y = model_size_info[8] #time axis
second_filter_stride_x = model_size_info[9] #frequency_axis
linear_layer_size = model_size_info[10]
fc_size = model_size_info[11]
# first conv
first_weights = tf.Variable(
tf.truncated_normal(
[first_filter_height, first_filter_width, 1, first_filter_count],
stddev=0.01))
first_bias = tf.Variable(tf.zeros([first_filter_count]))
first_conv = tf.nn.conv2d(fingerprint_4d, first_weights, [
1, first_filter_stride_y, first_filter_stride_x, 1
], 'VALID') + first_bias
first_conv = tf.layers.batch_normalization(first_conv, training=is_training,
name='bn1')
first_relu = tf.nn.relu(first_conv)
if is_training:
first_dropout = tf.nn.dropout(first_relu, dropout_prob)
else:
first_dropout = first_relu
first_conv_output_width = math.ceil(
(input_frequency_size - first_filter_width + 1) /
first_filter_stride_x)
first_conv_output_height = math.ceil(
(input_time_size - first_filter_height + 1) /
first_filter_stride_y)
# second conv
second_weights = tf.Variable(
tf.truncated_normal(
[second_filter_height, second_filter_width, first_filter_count,
second_filter_count],
stddev=0.01))
second_bias = tf.Variable(tf.zeros([second_filter_count]))
second_conv = tf.nn.conv2d(first_dropout, second_weights, [
1, second_filter_stride_y, second_filter_stride_x, 1
], 'VALID') + second_bias
second_conv = tf.layers.batch_normalization(second_conv, training=is_training,
name='bn2')
second_relu = tf.nn.relu(second_conv)
if is_training:
second_dropout = tf.nn.dropout(second_relu, dropout_prob)
else:
second_dropout = second_relu
second_conv_output_width = math.ceil(
(first_conv_output_width - second_filter_width + 1) /
second_filter_stride_x)
second_conv_output_height = math.ceil(
(first_conv_output_height - second_filter_height + 1) /
second_filter_stride_y)
second_conv_element_count = int(
second_conv_output_width*second_conv_output_height*second_filter_count)
flattened_second_conv = tf.reshape(second_dropout,
[-1, second_conv_element_count])
# linear layer
W = tf.get_variable('W', shape=[second_conv_element_count, linear_layer_size],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable('b', shape=[linear_layer_size])
flow = tf.matmul(flattened_second_conv, W) + b
# first fc
first_fc_output_channels = fc_size
first_fc_weights = tf.Variable(
tf.truncated_normal(
[linear_layer_size, first_fc_output_channels], stddev=0.01))
first_fc_bias = tf.Variable(tf.zeros([first_fc_output_channels]))
first_fc = tf.matmul(flow, first_fc_weights) + first_fc_bias
first_fc = tf.layers.batch_normalization(first_fc, training=is_training,
name='bn3')
first_fc = tf.nn.relu(first_fc)
if is_training:
final_fc_input = tf.nn.dropout(first_fc, dropout_prob)
else:
final_fc_input = first_fc
label_count = model_settings['label_count']
final_fc_weights = tf.Variable(
tf.truncated_normal(
[first_fc_output_channels, label_count], stddev=0.01))
final_fc_bias = tf.Variable(tf.zeros([label_count]))
final_fc = tf.matmul(final_fc_input, final_fc_weights) + final_fc_bias
if is_training:
return final_fc, dropout_prob
else:
return final_fc
def create_basic_lstm_model(fingerprint_input, model_settings, model_size_info,
is_training):
"""Builds a model with a basic lstm layer (without output projection and
peep-hole connections)
model_size_info: defines the number of memory cells in basic lstm model
"""
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
input_frequency_size = model_settings['dct_coefficient_count']
input_time_size = model_settings['spectrogram_length']
fingerprint_4d = tf.reshape(fingerprint_input,
[-1, input_time_size, input_frequency_size])
num_classes = model_settings['label_count']
if type(model_size_info) is list:
LSTM_units = model_size_info[0]
else:
LSTM_units = model_size_info
with tf.name_scope('LSTM-Layer'):
with tf.variable_scope("lstm"):
lstmcell = tf.contrib.rnn.BasicLSTMCell(LSTM_units, forget_bias=1.0,
state_is_tuple=True)
_, last = tf.nn.dynamic_rnn(cell=lstmcell, inputs=fingerprint_4d,
dtype=tf.float32)
flow = last[-1]
with tf.name_scope('Output-Layer'):
W_o = tf.get_variable('W_o', shape=[LSTM_units, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b_o = tf.get_variable('b_o', shape=[num_classes])
logits = tf.matmul(flow, W_o) + b_o
if is_training:
return logits, dropout_prob
else:
return logits
def create_lstm_model(fingerprint_input, model_settings, model_size_info,
is_training):
"""Builds a model with a lstm layer (with output projection layer and
peep-hole connections)
Based on model described in https://arxiv.org/abs/1705.02411
model_size_info: [projection size, memory cells in LSTM]
"""
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
input_frequency_size = model_settings['dct_coefficient_count']
input_time_size = model_settings['spectrogram_length']
fingerprint_4d = tf.reshape(fingerprint_input,
[-1, input_time_size, input_frequency_size])
num_classes = model_settings['label_count']
projection_units = model_size_info[0]
LSTM_units = model_size_info[1]
with tf.name_scope('LSTM-Layer'):
with tf.variable_scope("lstm"):
lstmcell = tf.contrib.rnn.LSTMCell(LSTM_units, use_peepholes=True,
num_proj=projection_units)
_, last = tf.nn.dynamic_rnn(cell=lstmcell, inputs=fingerprint_4d,
dtype=tf.float32)
flow = last[-1]
with tf.name_scope('Output-Layer'):
W_o = tf.get_variable('W_o', shape=[projection_units, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b_o = tf.get_variable('b_o', shape=[num_classes])
logits = tf.matmul(flow, W_o) + b_o
if is_training:
return logits, dropout_prob
else:
return logits
class LayerNormGRUCell(rnn_cell_impl.RNNCell):
def __init__(self, num_units, forget_bias=1.0,
input_size=None, activation=math_ops.tanh,
layer_norm=True, norm_gain=1.0, norm_shift=0.0,
dropout_keep_prob=1.0, dropout_prob_seed=None,
reuse=None):
super(LayerNormGRUCell, self).__init__(_reuse=reuse)
if input_size is not None:
tf.logging.info("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._activation = activation
self._forget_bias = forget_bias
self._keep_prob = dropout_keep_prob
self._seed = dropout_prob_seed
self._layer_norm = layer_norm
self._g = norm_gain
self._b = norm_shift
self._reuse = reuse
@property
def state_size(self):
return self._num_units
@property
def output_size(self):
return self._num_units
def _norm(self, inp, scope):
shape = inp.get_shape()[-1:]
gamma_init = init_ops.constant_initializer(self._g)
beta_init = init_ops.constant_initializer(self._b)
with vs.variable_scope(scope):
# Initialize beta and gamma for use by layer_norm.
vs.get_variable("gamma", shape=shape, initializer=gamma_init)
vs.get_variable("beta", shape=shape, initializer=beta_init)
normalized = layers.layer_norm(inp, reuse=True, scope=scope)
return normalized
def _linear(self, args, copy):
out_size = copy * self._num_units
proj_size = args.get_shape()[-1]
weights = vs.get_variable("kernel", [proj_size, out_size])
out = math_ops.matmul(args, weights)
if not self._layer_norm:
bias = vs.get_variable("bias", [out_size])
out = nn_ops.bias_add(out, bias)
return out
def call(self, inputs, state):
"""LSTM cell with layer normalization and recurrent dropout."""
with vs.variable_scope("gates"):
h = state
args = array_ops.concat([inputs, h], 1)
concat = self._linear(args, 2)
z, r = array_ops.split(value=concat, num_or_size_splits=2, axis=1)
if self._layer_norm:
z = self._norm(z, "update")
r = self._norm(r, "reset")
with vs.variable_scope("candidate"):
args = array_ops.concat([inputs, math_ops.sigmoid(r) * h], 1)
new_c = self._linear(args, 1)
if self._layer_norm:
new_c = self._norm(new_c, "state")
new_h = self._activation(new_c) * math_ops.sigmoid(z) + \
(1 - math_ops.sigmoid(z)) * h
return new_h, new_h
def create_gru_model(fingerprint_input, model_settings, model_size_info,
is_training):
"""Builds a model with multi-layer GRUs
model_size_info: [number of GRU layers, number of GRU cells per layer]
Optionally, the bi-directional GRUs and/or GRU with layer-normalization
can be explored.
"""
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
input_frequency_size = model_settings['dct_coefficient_count']
input_time_size = model_settings['spectrogram_length']
fingerprint_4d = tf.reshape(fingerprint_input,
[-1, input_time_size, input_frequency_size])
num_classes = model_settings['label_count']
layer_norm = False
bidirectional = False
num_layers = model_size_info[0]
gru_units = model_size_info[1]
gru_cell_fw = []
gru_cell_bw = []
if layer_norm:
for i in range(num_layers):
gru_cell_fw.append(LayerNormGRUCell(gru_units))
if bidirectional:
gru_cell_bw.append(LayerNormGRUCell(gru_units))
else:
for i in range(num_layers):
gru_cell_fw.append(tf.contrib.rnn.GRUCell(gru_units))
if bidirectional:
gru_cell_bw.append(tf.contrib.rnn.GRUCell(gru_units))
if bidirectional:
outputs, output_state_fw, output_state_bw = \
tf.contrib.rnn.stack_bidirectional_dynamic_rnn(gru_cell_fw, gru_cell_bw,
fingerprint_4d, dtype=tf.float32)
flow = outputs[:, -1, :]
else:
cells = tf.contrib.rnn.MultiRNNCell(gru_cell_fw)
_, last = tf.nn.dynamic_rnn(cell=cells, inputs=fingerprint_4d,
dtype=tf.float32)
flow = last[-1]
with tf.name_scope('Output-Layer'):
W_o = tf.get_variable('W_o', shape=[flow.get_shape()[-1], num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b_o = tf.get_variable('b_o', shape=[num_classes])
logits = tf.matmul(flow, W_o) + b_o
if is_training:
return logits, dropout_prob
else:
return logits
def create_crnn_model(fingerprint_input, model_settings,
model_size_info, is_training):
"""Builds a model with convolutional recurrent networks with GRUs
Based on the model definition in https://arxiv.org/abs/1703.05390
model_size_info: defines the following convolution layer parameters
{number of conv features, conv filter height, width, stride in y,x dir.},
followed by number of GRU layers and number of GRU cells per layer
Optionally, the bi-directional GRUs and/or GRU with layer-normalization
can be explored.
"""
if is_training:
dropout_prob = tf.placeholder(tf.float32, name='dropout_prob')
input_frequency_size = model_settings['dct_coefficient_count']
input_time_size = model_settings['spectrogram_length']
fingerprint_4d = tf.reshape(fingerprint_input,
[-1, input_time_size, input_frequency_size, 1])
layer_norm = False
bidirectional = False
# CNN part
first_filter_count = model_size_info[0]
first_filter_height = model_size_info[1]
first_filter_width = model_size_info[2]
first_filter_stride_y = model_size_info[3]
first_filter_stride_x = model_size_info[4]
first_weights = tf.get_variable('W', shape=[first_filter_height,
first_filter_width, 1, first_filter_count],
initializer=tf.contrib.layers.xavier_initializer())
first_bias = tf.Variable(tf.zeros([first_filter_count]))
first_conv = tf.nn.conv2d(fingerprint_4d, first_weights, [
1, first_filter_stride_y, first_filter_stride_x, 1
], 'VALID') + first_bias
first_relu = tf.nn.relu(first_conv)
if is_training:
first_dropout = tf.nn.dropout(first_relu, dropout_prob)