Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving #24

Open
DeepTecher opened this issue Mar 25, 2019 · 1 comment

Comments

@DeepTecher
Copy link
Owner

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving,CVPR 2019, 3D物体检测

提交日期:2019-03-18(2018-12-18 v1)
团队:康奈尔大学
作者:Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger
摘要:3D物体检测是自动驾驶中的基本任务。如果从精确但昂贵的LiDAR技术获得3D输入数据,则技术具有高度准确的检测率。迄今为止,基于较便宜的单眼或立体图像数据的方法导致精度显着降低 - 这种差距通常归因于基于图像的深度估计不良。然而,在本文中,我们认为数据表示(而不是其质量)占据了差异的大部分。考虑到卷积神经网络的内部工作原理,我们建议将基于图像的深度图转换为伪LiDAR表示 - 基本上模仿LiDAR信号。通过这种表示,我们可以应用不同的现有基于LiDAR的检测算法。在KITTI基准测试中,我们的方法在现有的基于图像的性能方面取得了SOTA的改进 -提高了30米范围内物体的检测精度,从先前SOTA的22%到现在的74% 。在提交时,我们的算法在KITTI 3D对象检测基于立体图像的方法的排行榜上为第一。

@DeepTecher
Copy link
Owner Author

DeepTecher commented Mar 25, 2019

代码:mileyan/pseudo_lidar,暂未公布代码
项目链接:mileyan.github.io/pseudo_lidar/

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant