We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Improved Robustness and Safety for Autonomous Vehicle Control with Adversarial Reinforcement Learning
提交日期; 2019-03-08 团队: 斯坦福大学航空航天系 作者: Xiaobai Ma, Katherine Driggs-Campbell, Mykel J. Kochenderfer
摘要:为了对自动驾驶车提高效率并减少故障,研究重点是开发考虑到环境干扰的强大而安全的学习方法。 强化学习现有文献将学习问题作为自治系统与干扰之间的双人游戏。 本文研究了两种不同的算法来解决这种双人游戏:鲁棒性对抗强化学习和神经虚拟自我游戏,并比较这两种算法在自动驾驶场景的表现。我们将游戏制定扩展到半竞争环境,并证明最终的对手可以更好地捕获有意义的干扰,从而提高整体性能。 与传统强化学习方法产生的基线控制政策相比,这种方式下的鲁棒性的政策表现提高了驾驶效率,同时降低了碰撞率。
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Improved Robustness and Safety for Autonomous Vehicle Control with Adversarial Reinforcement Learning
提交日期; 2019-03-08
团队: 斯坦福大学航空航天系
作者: Xiaobai Ma, Katherine Driggs-Campbell, Mykel J. Kochenderfer
摘要:为了对自动驾驶车提高效率并减少故障,研究重点是开发考虑到环境干扰的强大而安全的学习方法。 强化学习现有文献将学习问题作为自治系统与干扰之间的双人游戏。 本文研究了两种不同的算法来解决这种双人游戏:鲁棒性对抗强化学习和神经虚拟自我游戏,并比较这两种算法在自动驾驶场景的表现。我们将游戏制定扩展到半竞争环境,并证明最终的对手可以更好地捕获有意义的干扰,从而提高整体性能。 与传统强化学习方法产生的基线控制政策相比,这种方式下的鲁棒性的政策表现提高了驾驶效率,同时降低了碰撞率。
The text was updated successfully, but these errors were encountered: