We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
From Coarse to Fine: Robust Hierarchical Localization at Large Scale,定位
提交日期:2019-04-08 团队: 苏黎世联邦理工学院ASL(Autonomous Systems Lab)、Sevensense Robotics AG 作者:Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, Marcin Dymczyk
摘要:强大而准确的视觉定位是众多应用的基本功能,例如自动驾驶,移动机器人或增强现实。然而,它仍然是一项具有挑战性的任务,特别是对于大规模环境和存在显着的外观变化。SOTA不仅会遇到这种情况,而且对于某些实时应用来说往往资源过于密集。在本文中,我们提出HF-Net,一种基于单片CNN的分层定位方法,同时预测局部特征和全局描述符,以实现准确的6-DoF定位。我们利用粗到精的定位范例:我们首先执行全局检索以获得位置假设,然后才匹配这些候选位置内的局部特征。这种分层方法可以节省大量的运行时间,使我们的系统适合实时操作。通过利用学习的描述符,我们的方法在大范围的外观变化中实现了显着的定位稳健性,并为大规模定位的两个具有挑战性的基准设置了新的最新技术。
The text was updated successfully, but these errors were encountered:
No branches or pull requests
From Coarse to Fine: Robust Hierarchical Localization at Large Scale,定位
提交日期:2019-04-08
团队: 苏黎世联邦理工学院ASL(Autonomous Systems Lab)、Sevensense Robotics AG
作者:Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, Marcin Dymczyk
摘要:强大而准确的视觉定位是众多应用的基本功能,例如自动驾驶,移动机器人或增强现实。然而,它仍然是一项具有挑战性的任务,特别是对于大规模环境和存在显着的外观变化。SOTA不仅会遇到这种情况,而且对于某些实时应用来说往往资源过于密集。在本文中,我们提出HF-Net,一种基于单片CNN的分层定位方法,同时预测局部特征和全局描述符,以实现准确的6-DoF定位。我们利用粗到精的定位范例:我们首先执行全局检索以获得位置假设,然后才匹配这些候选位置内的局部特征。这种分层方法可以节省大量的运行时间,使我们的系统适合实时操作。通过利用学习的描述符,我们的方法在大范围的外观变化中实现了显着的定位稳健性,并为大规模定位的两个具有挑战性的基准设置了新的最新技术。
The text was updated successfully, but these errors were encountered: