-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathLDA.R
90 lines (83 loc) · 3.7 KB
/
LDA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#---------------------------------------------------------------------------------------------------------
#Function LDA Linear Discriminant Analysis
#---------------------------------------------------------------------------------------------------------
lda = function(x,y,robust=TRUE,alpha,m,l,delta){
K = 2
x= as.matrix(x)
#case 1(when robust standard LDA should be performed)
#-------------------------------------------------------------------------------------
#number of obersations in X/rows
#set of observations corresponding to class 0
x_class0 = x[y==0,]
#set of observations corresponding to class 1
x_class1 = x[y==1,]
n0 = nrow(x_class0) #number of obs. in class 0
n1 = nrow(x_class1) #number of obs. in class 1
#estimators for priors
pi0_hat = n0/(n0+n1)
pi1_hat = n1/(n0+n1)
prior = rbind(pi0_hat,pi1_hat)
if (robust == 'FALSE'){
#determining the center of each group
mean0_hat = apply(x_class0,2,mean)
mean1_hat = apply(x_class1,2,mean)
#matrix in which row 1(2) contains centers of the first group(second group)
center = as.matrix(rbind(mean0_hat,mean1_hat), nrow = 2, ncol = ncol(x))
#Pooled Covariance matrix
cov_pooled = (1/(n0+n1-K))*((n0-1)*var(x_class0) + (n1-1)*var(x_class1))
}
#case 2(when robustified LDA based on the MCD estimator should be computed)
else{
#determining the cnter estimates using the data of the first class
mcd_results0 = covFastMCD(x_class0,alpha,m,l,delta) #using earlier creating function of covMCD
mean0_hat = mcd_results0$center #center estimates
sigma0 = as.matrix(mcd_results0$cov) #covariance matrix
#determining the cnter estimates using the data of the first class
mcd_results1 = covFastMCD(x_class1,alpha,m,l,delta)
mean1_hat = mcd_results1$center
sigma1 = as.matrix(mcd_results1$cov) #the MCD covariance matrix for class_1 data
#center estimates matrix
center = as.matrix(rbind(mean0_hat,mean1_hat), nrow = 2, ncol = ncol(x))
#Pooled Covariance matrix
cov_pooled = 1/(n0+n1-K)*((n0-1)*sigma0 + (n1-1)*sigma1)
}
#Calculating coefficients of LDA
lda.cf = solve(cov_pooled)%*%as.matrix(center[2,]-center[1,])
lda.cf.normalized = t(lda.cf)%*%cov_pooled%*%lda.cf
lda.cf.final = lda.cf/drop(sqrt(lda.cf.normalized)) #making sure the dimensions coinsize
#output
listlda = list(center = center,cov_pooled = cov_pooled,prior = prior,coefficients = lda.cf.final)
return(listlda)
}
#---------------------------------------------------------------------------------------------------------
#Function PredictLDA
#---------------------------------------------------------------------------------------------------------
predictLda = function(object,newdata){
n = nrow(newdata)
Y = rep(0,n)
newdata = as.matrix(newdata)
#function which return the discriminant value corresponding to class 0
discri_value0= function(x){
value0 = -0.5*t(x-object$center[1,])%*%solve(object$cov_pooled)%*%(x-object$center[1,]) + log(object$prior[1,])
return(value0)
}
#function which return the discriminant value corresponding to class 1
discri_value1= function(x){
value1 = -0.5*t(x-object$center[2,])%*%solve(object$cov_pooled)%*%(x-object$center[2,]) + log(object$prior[2,])
return(value1)
}
#for each observation( of 1by6) of newdata we have to compare the discriminant values
#if the new data is n by 6 such that it's number of columns is 6
for (i in 1:n){
if(discri_value1(newdata[i,]) > discri_value0(newdata[i,])){
#assign that observation to class 1
Y[i] = 1
}
else if(discri_value1(newdata[i,]) < discri_value0(newdata[i,])){
#assign that observation to class 0
Y[i] = 0
}
}
pred = list(class = Y)
return(pred)
}