-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
154 lines (126 loc) · 6.84 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
from sklearn.metrics import balanced_accuracy_score
def get_data(dataset, protected_attribute, seed=101):
def protected_attribute_error():
raise ValueError(f'protected attribute {protected_attribute} is not available for dataset {dataset}')
if dataset == 'adult':
from aif360.datasets import AdultDataset
dataset_orig = AdultDataset()
if protected_attribute == 'sex':
privileged_groups = [{'sex': 1}]
unprivileged_groups = [{'sex': 0}]
elif protected_attribute == 'sex_or_race':
dataset_orig.feature_names += ['sex_or_race']
dataset_orig.features = np.hstack([dataset_orig.features, np.expand_dims(np.logical_or(*dataset_orig.features[:, [2, 3]].T).astype(np.float64), -1)])
dataset_orig.protected_attributes = np.hstack([dataset_orig.protected_attributes, dataset_orig.features[:, [-1]]])
dataset_orig.protected_attribute_names += ['sex_or_race']
dataset_orig.privileged_protected_attributes += [np.array([1.])]
dataset_orig.unprivileged_protected_attributes += [np.array([0.])]
privileged_groups = [{'sex_or_race': 1}]
unprivileged_groups = [{'sex_or_race': 0}]
elif protected_attribute == 'race':
privileged_groups = [{'race': 1}]
unprivileged_groups = [{'race': 0}]
else:
protected_attribute_error()
elif dataset == 'german':
from aif360.datasets import GermanDataset
dataset_orig = GermanDataset()
if protected_attribute == 'sex':
privileged_groups = [{'sex': 1}]
unprivileged_groups = [{'sex': 0}]
elif protected_attribute == 'age':
privileged_groups = [{'age': 1}]
unprivileged_groups = [{'age': 0}]
else:
protected_attribute_error()
elif dataset == 'compas':
from aif360.datasets import CompasDataset
dataset_orig = CompasDataset()
if protected_attribute == 'sex':
privileged_groups = [{'sex': 0}]
unprivileged_groups = [{'sex': 1}]
elif protected_attribute == 'sex_or_race':
dataset_orig.feature_names += ['sex_or_race']
dataset_orig.features = np.hstack([dataset_orig.features, np.expand_dims(np.logical_or(*dataset_orig.features[:, [0, 2]].T).astype(np.float64), -1)])
dataset_orig.protected_attributes = np.hstack([dataset_orig.protected_attributes, dataset_orig.features[:, [-1]]])
dataset_orig.protected_attribute_names += ['sex_or_race']
dataset_orig.privileged_protected_attributes += [np.array([1.])]
dataset_orig.unprivileged_protected_attributes += [np.array([0.])]
privileged_groups = [{'sex_or_race': 1}]
unprivileged_groups = [{'sex_or_race': 0}]
elif protected_attribute == 'race':
privileged_groups = [{'race': 1}]
unprivileged_groups = [{'race': 0}]
else:
protected_attribute_error()
elif dataset == 'bank':
from aif360.datasets import BankDataset
dataset_orig = BankDataset()
if protected_attribute == 'age':
privileged_groups = [{'age': 1}]
unprivileged_groups = [{'age': 0}]
else:
protected_attribute_error()
else:
raise ValueError(f'{dataset} is not an available dataset.')
dataset_orig_train, dataset_orig_vt = dataset_orig.split([0.6], shuffle=True, seed=seed)
dataset_orig_valid, dataset_orig_test = dataset_orig_vt.split([0.5], shuffle=True, seed=seed)
return dataset_orig_train, dataset_orig_valid, dataset_orig_test, privileged_groups, unprivileged_groups
def compute_bias(y_pred, y_true, priv, metric):
def zero_if_nan(x):
return 0. if np.isnan(x) else x
gtpr_priv = zero_if_nan(y_pred[priv * y_true == 1].mean())
gfpr_priv = zero_if_nan(y_pred[priv * (1-y_true) == 1].mean())
mean_priv = zero_if_nan(y_pred[priv == 1].mean())
gtpr_unpriv = zero_if_nan(y_pred[(1-priv) * y_true == 1].mean())
gfpr_unpriv = zero_if_nan(y_pred[(1-priv) * (1-y_true) == 1].mean())
mean_unpriv = zero_if_nan(y_pred[(1-priv) == 1].mean())
if metric == 'spd':
return mean_unpriv - mean_priv
elif metric == 'aod':
return 0.5 * ((gfpr_unpriv - gfpr_priv) + (gtpr_unpriv - gtpr_priv))
elif metric == 'eod':
return gtpr_unpriv - gtpr_priv
def objective_function(bias, performance, lam=0.75):
return - lam*abs(bias) - (1-lam)*(1-performance)
def sharp_objective_function(bias, performance, sharpness=500., epsilon=0.05):
def sigmoid(value, sharpness, epsilon):
return 1. / (1. + np.exp(sharpness*(np.abs(value)-epsilon)))
return sigmoid(bias, sharpness, epsilon) * performance
def threshold_objective_function(bias, performance, epsilon=0.05):
if abs(bias) < epsilon:
return performance
else:
return 0.0
def get_objective(y_pred, y_true, priv, metric, sharpness=500., epsilon=0.05, kind='threshold'):
bias = compute_bias(y_pred, y_true, priv, metric)
performance = balanced_accuracy_score(y_true, y_pred)
if kind == 'default':
objective = objective_function(bias, performance, epsilon)
elif kind == 'sharp':
objective = sharp_objective_function(bias, performance, sharpness, epsilon)
elif kind == 'threshold':
objective = threshold_objective_function(bias, performance, epsilon)
else:
raise ValueError(f'objective function of kind {kind} is not available.')
return {'objective': objective, 'bias': bias, 'performance': performance}
def get_valid_objective(y_pred, data, config, valid=False, margin=0.00, num_samples=5):
y_val = data.y_valid_valid if valid else data.y_valid
p_val = data.p_valid_valid if valid else data.p_valid
indices = np.random.choice(np.arange(y_pred.size), num_samples*y_pred.size, replace=True).reshape(num_samples, y_pred.size)
results = {'objective': [], 'bias': [], 'performance': []}
for index in indices:
result = get_objective(y_pred[index], y_val.numpy()[index], p_val[index],
config['metric'], config['objective']['sharpness'], config['objective']['epsilon'] - margin)
results = {k: v+[result[k]] for k, v in results.items()}
return {k: np.mean(v) for k, v in results.items()}
def get_test_objective(y_pred, data, config):
return get_objective(y_pred, data.y_test.numpy(), data.p_test,
config['metric'], config['objective']['sharpness'], config['objective']['epsilon'])
def get_best_thresh(scores, threshs, data, config, valid=False, margin=0.00):
objectives = []
for thresh in threshs:
valid_objective = get_valid_objective(scores > thresh, data, config, valid=valid, margin=margin)
objectives.append(valid_objective['objective'])
return threshs[np.argmax(objectives)], np.max(objectives)