-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvid2xlsx.py
78 lines (70 loc) · 3.09 KB
/
vid2xlsx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python3
from imutils.video import FileVideoStream
from loguru import logger
from sklearn.cluster import MiniBatchKMeans
import argparse
import cv2
import imutils
import numpy as np
import sys
import xlsxwriter
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", required = True, help = "path to input video file")
ap.add_argument("-o", "--output", required = True, help = "path to output xlsx file")
ap.add_argument("-v", "--verbose", action = "store_true", help = "show detailed output")
ap.add_argument("-d", "--debug", action = "store_true", help = "show debug and troubleshooting information")
ap.add_argument("-c", "--colors", required = True, type = int, help = "number of colors per frame")
ap.add_argument("-f", "--frame", required = True, type = int, help = "how often a frame should be generated")
args = vars(ap.parse_args())
cap = FileVideoStream(args["input"]).start()
if args["verbose"]: logger.info("Opened FileVideoStream from {}", args["input"])
length = int(cv2.VideoCapture(args["input"]).get(7))
if args["debug"]: logger.debug("File contains {} frames, expect {} frames in output", length, length // args["frame"])
if args["debug"]: logger.debug("Projected maximum color usage: {}", length // args["frame"] * args["colors"])
if length // args["frame"] * args["colors"] > 64000: logger.warning("Current settings may exceed the maximum number of colors permitted in an XLSX file (64000)")
width = 640
height = 360
count = 0
workbook = xlsxwriter.Workbook(args["output"], {'constant_memory': True})
palette = {}
clt = None
labels = None
quant = None
while cap.more():
frame = cap.read()
if frame is None:
break
if count % args["frame"] == 0:
current = workbook.add_worksheet(str(count))
current.set_zoom(10)
if args["verbose"]: logger.info("Processing frame {}", count)
if args["debug"]: logger.debug("Palette dictionary size: {}", len(palette))
frame = cv2.resize(frame, (width, height), interpolation = cv2.INTER_CUBIC)
(h, w) = frame.shape[:2]
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
frame = frame.reshape((frame.shape[0] * frame.shape[1], 3))
clt = MiniBatchKMeans(n_clusters = args["colors"])
labels = clt.fit_predict(frame)
quant = clt.cluster_centers_.astype("uint8")[labels]
quant = quant.reshape((h, w, 3))
frame = cv2.cvtColor(quant, cv2.COLOR_LAB2BGR)
cv2.imshow("Preview", frame)
cv2.waitKey(1)
current.set_column(0, width - 1, 3.17)
for row in range(0, height):
current.set_row(row, 18.75)
for col in range(0, width):
blue, green, red = frame[row][col]
color = f'{red:02x}{green:02x}{blue:02x}'
if color not in palette:
palette[color] = workbook.add_format({'bg_color': f'#{color}'})
cell_format = palette[color]
current.write_blank(row, col, None, cell_format)
count = count + 1
if len(palette) > 64000: logger.warning("""
Palette size ({}) exceeds the maximum permitted under the XLSX specification (64000).
The resulting file may not be recognized as a valid XLSX file.""", len(palette))
if args["verbose"]: logger.info("Writing xlsx file: {}", args["output"])
workbook.close()
cap.stop()
cv2.destroyAllWindows()