-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathutil.py
49 lines (36 loc) · 1.15 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copyright (c) Anish Athalye. Released under the MIT license.
import numpy as np
import onnx
from onnx_tf.backend import prepare
from PIL import Image
def load_model(path):
onnx_model = onnx.load(path)
model = prepare(onnx_model, training_mode=True)
return model
def load_seed(path):
seed = open(path, 'rb').read()[128:]
seed = np.frombuffer(seed, dtype=np.float32)
seed = seed.reshape([96, 128])
return seed
def load_image(path):
im = Image.open(path).convert('RGB')
im = im.resize([360, 360])
arr = np.array(im).astype(np.float32) / 255.0
arr = arr * 2.0 - 1.0
arr = arr.transpose(2, 0, 1).reshape([1, 3, 360, 360])
return arr
def save_image(arr, path):
arr = arr.reshape([3, 360, 360]).transpose(1, 2, 0)
arr = (arr + 1.0) * (255.0 / 2.0)
arr = arr.astype(np.uint8)
im = Image.fromarray(arr)
im.save(path)
def hash_from_hex(hex_repr):
n = int(hex_repr, 16)
h = np.zeros(96)
for i in range(96):
h[i] = (n >> (95 - i)) & 1
return h
def hash_to_hex(h):
bits = ''.join(['1' if i >= 0.5 else '0' for i in h])
return '{:0{}x}'.format(int(bits, 2), len(bits) // 4)