forked from pharmapsychotic/clip-interrogator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_cli.py
executable file
·95 lines (82 loc) · 3.44 KB
/
run_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/env python3
import argparse
import csv
import os
import requests
import torch
from PIL import Image
from clip_interrogator import Interrogator, Config, list_clip_models
def inference(ci, image, mode):
image = image.convert('RGB')
if mode == 'best':
return ci.interrogate(image)
elif mode == 'classic':
return ci.interrogate_classic(image)
else:
return ci.interrogate_fast(image)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--clip', default='ViT-L-14/openai', help='name of CLIP model to use')
parser.add_argument('-d', '--device', default='auto', help='device to use (auto, cuda or cpu)')
parser.add_argument('-f', '--folder', help='path to folder of images')
parser.add_argument('-i', '--image', help='image file or url')
parser.add_argument('-m', '--mode', default='best', help='best, classic, or fast')
parser.add_argument("--lowvram", action='store_true', help="Optimize settings for low VRAM")
args = parser.parse_args()
if not args.folder and not args.image:
parser.print_help()
exit(1)
if args.folder is not None and args.image is not None:
print("Specify a folder or batch processing or a single image, not both")
exit(1)
# validate clip model name
models = list_clip_models()
if args.clip not in models:
print(f"Could not find CLIP model {args.clip}!")
print(f" available models: {models}")
exit(1)
# select device
if args.device == 'auto':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if not torch.cuda.is_available():
print("CUDA is not available, using CPU. Warning: this will be very slow!")
else:
device = torch.device(args.device)
# generate a nice prompt
config = Config(device=device, clip_model_name=args.clip)
if args.lowvram:
config.apply_low_vram_defaults()
ci = Interrogator(config)
# process single image
if args.image is not None:
image_path = args.image
if str(image_path).startswith('http://') or str(image_path).startswith('https://'):
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
else:
image = Image.open(image_path).convert('RGB')
if not image:
print(f'Error opening image {image_path}')
exit(1)
print(inference(ci, image, args.mode))
# process folder of images
elif args.folder is not None:
if not os.path.exists(args.folder):
print(f'The folder {args.folder} does not exist!')
exit(1)
files = [f for f in os.listdir(args.folder) if f.endswith('.jpg') or f.endswith('.png')]
prompts = []
for file in files:
image = Image.open(os.path.join(args.folder, file)).convert('RGB')
prompt = inference(ci, image, args.mode)
prompts.append(prompt)
print(prompt)
if len(prompts):
csv_path = os.path.join(args.folder, 'desc.csv')
with open(csv_path, 'w', encoding='utf-8', newline='') as f:
w = csv.writer(f, quoting=csv.QUOTE_MINIMAL)
w.writerow(['image', 'prompt'])
for file, prompt in zip(files, prompts):
w.writerow([file, prompt])
print(f"\n\n\n\nGenerated {len(prompts)} and saved to {csv_path}, enjoy!")
if __name__ == "__main__":
main()