-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathspectrum.py
523 lines (437 loc) · 20 KB
/
spectrum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#!/usr/bin/env python
"""
This plot displays the audio spectrum from the microphone.
Based on updating_plot.py
"""
# Major library imports
import time
import os
import pyaudio
import wave
from numpy import zeros, linspace, short, fromstring, hstack, transpose
import numpy as np
from scipy import fft
# Enthought library imports
from chaco.default_colormaps import jet
from enable.api import Window, Component, ComponentEditor
from traits.api import HasTraits, Instance
from traitsui.api import Item, Group, View, Handler
from enable.example_support import DemoFrame, demo_main
from pyface.timer.api import Timer
# Chaco imports
from chaco.api import Plot, ArrayPlotData, HPlotContainer
#Left/Right channels
DATA_CHANNEL=1
SYNC_CHANNEL=0
assert not DATA_CHANNEL == SYNC_CHANNEL
assert DATA_CHANNEL in [0,1]
assert SYNC_CHANNEL in [0,1]
NUM_SAMPLES = 8192*2
SAMPLING_RATE = 96000
#SAMPLING_RATE = 192000
SPECTROGRAM_LENGTH = 100
TIMER_PERIOD = round(float(NUM_SAMPLES)/SAMPLING_RATE*1000)
TIMER_PERIOD = TIMER_PERIOD * .90
#only one of the two should be set True
LIVE_INPUT = True #capture from soundcard
PLAYBACK_RECORDING = False #playback a recorded PCM .wav file
RECORD_LIVE_INPUT = False #only valid if LIVE_INPUT==True
RADAR_RANGING = True #Doppler or Ranging?
if(RADAR_RANGING):
CHIRP_TIME = 20.0*1e-3 #20 miliseconds
TIME_NUM_SAMPLES = int(round(CHIRP_TIME * SAMPLING_RATE))
FRAME_SIZE = TIME_NUM_SAMPLES
FRAME_LOW_THRES = .85 * FRAME_SIZE
FRAME_HI_THRES = 1.15 * FRAME_SIZE
FFT_N = 2048 * 4
#TIME_NUM_SAMPLES = FFT_N
else:
TIME_NUM_SAMPLES = NUM_SAMPLES
FFT_N = NUM_SAMPLES
MAX_FREQ = 3000
MAX_FREQN = float(MAX_FREQ)/(SAMPLING_RATE/2.0) * FFT_N
MAX_FREQN = int(round(MAX_FREQN))
MAX_FREQ = float(MAX_FREQN)/FFT_N * SAMPLING_RATE/2.0
print 'max frequency',MAX_FREQ,MAX_FREQN
#============================================================================
# Create the Chaco plot.
#============================================================================
def _create_plot_component(obj):
# Setup the spectrum plot
frequencies = linspace(0.0, MAX_FREQ, num=MAX_FREQN)
obj.spectrum_data = ArrayPlotData(frequency=frequencies)
empty_amplitude = zeros(MAX_FREQN)
obj.spectrum_data.set_data('amplitude', empty_amplitude)
obj.spectrum_plot = Plot(obj.spectrum_data)
obj.spectrum_plot.plot(("frequency", "amplitude"), name="Spectrum",
color="red")
obj.spectrum_plot.padding = 50
obj.spectrum_plot.title = "Spectrum"
spec_range = obj.spectrum_plot.plots.values()[0][0].value_mapper.range
spec_range.low = 0.0
spec_range.high = 150.0 #spectrum amplitude maximum
obj.spectrum_plot.index_axis.title = 'Frequency (hz)'
obj.spectrum_plot.value_axis.title = 'Amplitude'
# Time Series plot
times = linspace(0.0, float(TIME_NUM_SAMPLES)/SAMPLING_RATE, num=TIME_NUM_SAMPLES)
obj.time_data = ArrayPlotData(time=times)
empty_amplitude = zeros(TIME_NUM_SAMPLES)
obj.time_data.set_data('amplitude', empty_amplitude)
obj.time_data.set_data('amplitude_1', empty_amplitude)
obj.time_plot = Plot(obj.time_data)
obj.time_plot.plot(("time", "amplitude"), name="Time", color="blue", alpha=.5)
obj.time_plot.plot(("time", "amplitude_1"), name="Time", color="red", alpha=.5)
obj.time_plot.padding = 50
obj.time_plot.title = "Time"
obj.time_plot.index_axis.title = 'Time (seconds)'
obj.time_plot.value_axis.title = 'Amplitude'
time_range = obj.time_plot.plots.values()[0][0].value_mapper.range
time_range.low = -1
time_range.high = 1
# Spectrogram plot
spectrogram_data = zeros(( MAX_FREQN, SPECTROGRAM_LENGTH))
obj.spectrogram_plotdata = ArrayPlotData()
obj.spectrogram_plotdata.set_data('imagedata', spectrogram_data)
spectrogram_plot = Plot(obj.spectrogram_plotdata)
max_time = float(SPECTROGRAM_LENGTH * NUM_SAMPLES) / SAMPLING_RATE
#max_freq = float(SAMPLING_RATE / 2)
max_freq = float(MAX_FREQ)
spectrogram_plot.img_plot('imagedata',
name='Spectrogram',
xbounds=(0, max_time),
ybounds=(0, max_freq),
colormap=jet,
)
range_obj = spectrogram_plot.plots['Spectrogram'][0].value_mapper.range
range_obj.high = 2 #brightness of specgram
range_obj.low = 0.0
range_obj.edit_traits() #spawn a traits window
spectrogram_plot.title = 'Spectrogram'
obj.spectrogram_plot = spectrogram_plot
container = HPlotContainer()
container.add(obj.spectrum_plot)
container.add(obj.time_plot)
container.add(spectrogram_plot)
return container
_stream = None
_wavefd = None
def open_wave(path=None,rw='r'):
global _wavefd
if _wavefd is None:
try:
if(path is None):
path = '~/radar'+time.strftime('%Y%m%d_%H%M%S')+'.wav'
path = os.path.expanduser(path)
if(rw =='w'):
f = open(path,'w') #make the file
f.close()
_wavefd = wave.open(path,rw)
_wavefd.setnchannels(2)
_wavefd.setsampwidth(2)
_wavefd.setframerate(SAMPLING_RATE)
elif(rw=='r'):
_wavefd = wave.open(path,rw)
try:
assert _wavefd.getnchannels() == 2
assert _wavefd.getsampwidth() == 2
except AssertionError:#SAMPLING_RATE = 48000
print 'wave file format is not valid'
print ' number channels:%d, sample width:%d'%(_wavefd.getnchannels(),_wavefd.getsampwidth())
raise
if (int(_wavefd.getframerate()) != int(SAMPLING_RATE) ):
print "warning, the sampling rate of the file diagrees with SAMPLING_RATE"
print " file: %d, SAMPLING_RATE: %d"%(int(_wavefd.getframerate()),int(SAMPLING_RATE))
else:
raise ValueError
except:
print 'could not open file'
raise #rethrow the exception
else:
raise AssertionError, 'a record file is already opened'
wavefd_size = None
samples_read = None
last_progress = None
def get_audio_data():
global _stream
global _wavefd
global wavefd_size
global samples_read
global last_progress
if(LIVE_INPUT):
#get audio from line input
if(RECORD_LIVE_INPUT and _wavefd is None):
print "opening wave for recording"
open_wave(rw='w')
if _stream is None:
print "opening stream for input and output"
pa = pyaudio.PyAudio()
_stream = pa.open(format=pyaudio.paInt16, channels=2, rate=SAMPLING_RATE,
input=True,output=True, frames_per_buffer=NUM_SAMPLES)
audio_data = fromstring(_stream.read(NUM_SAMPLES), dtype=short)
_stream.write(audio_data,NUM_SAMPLES)
if(_wavefd is not None):
_wavefd.writeframes(audio_data)
normalized_data = audio_data[1::2] / 32768.0
normalized_sync = audio_data[0::2] / 32768.0
else: #playback from wave
if _wavefd is None:
open_wave(path='~/radar/radar20110120_103812_proc.wav',rw='r')
#open_wave(path='~/radar20110120_103812.wav',rw='r')
wavefd_size = _wavefd.getnframes()
assert wavefd_size %2 == 0 #it is a two-channel file, so even number of samples.
samples_read = 0
last_progress = 0 #number of frames when last progress report was emitted
if PLAYBACK_RECORDING:
if _stream is None:
pa = pyaudio.PyAudio()
_stream = pa.open(format=pyaudio.paInt16, channels=2, rate=SAMPLING_RATE,
input=False,output=True, frames_per_buffer=NUM_SAMPLES)
audio_data = fromstring(_wavefd.readframes(2*NUM_SAMPLES),dtype=short) #2* because of two channels
samples_read += NUM_SAMPLES
if(samples_read - last_progress > 0*SAMPLING_RATE):
last_progress = samples_read
print ' playback progress: %d/%d : %f percent'%(samples_read,wavefd_size/2,round(100.0*float(samples_read)/(wavefd_size/2)))
normalized_data = audio_data[DATA_CHANNEL::2] / 32768.0
normalized_sync = audio_data[SYNC_CHANNEL::2] / 32768.0
if(PLAYBACK_RECORDING):
_stream.write(audio_data,len(audio_data)/2)
if(len(audio_data)/2 < NUM_SAMPLES):
#reached end of file
print 'end of file'
if PLAYBACK_RECORDING:
_stream.close()
_wavefd.close()
_stream = None
_wavefd = None
return (normalized_data,normalized_sync)
# HasTraits class that supplies the callable for the timer event.
time_last = time.time()
buffer = None #stores audio
bufferIdx = None #index of the positive edge corresponding to an unprocessed frame
class TimerController(HasTraits):
def __init__(self):
self.spectrum_past = zeros(MAX_FREQN)
#interesting computations happen here!
def process_frame(self,frame):
#process a ranging frame
#time_plot = time_[risingEdge:risingEdge+TIME_NUM_SAMPLES]
#sync_plot = sync[risingedge:risingedge+TIME_NUM_SAMPLES]
sync_plot = np.zeros(TIME_NUM_SAMPLES)
time_plot = np.zeros(TIME_NUM_SAMPLES)
if frame.size > time_plot.size:
time_plot = frame[0:TIME_NUM_SAMPLES]
else:
time_plot[0:frame.size] = frame
time_padded = np.zeros(FFT_N)
padding = FFT_N - frame.size
a = padding/2
b = padding - a
window = np.hanning(frame.size)
frame = frame * window
time_padded[a:FFT_N-b] = frame
#time_plot = time_padded
spectrum = abs(fft(time_padded))[:MAX_FREQN]
self.spectrum_past = self.spectrum_past * .8 + spectrum * .2
spectrum = abs(spectrum-self.spectrum_past)
spectrum = np.log(spectrum)
spectrum = spectrum + 3.0/2.0 * np.linspace(0.0,1.0,MAX_FREQN)
#self.spectrum_data.set_data('amplitude', spectrum)
self.spectrum_data.set_data('amplitude', self.spectrum_past)
self.time_data.set_data('amplitude', time_plot)
self.time_data.set_data('amplitude_1', sync_plot)
spectrogram_data = self.spectrogram_plotdata.get_data('imagedata')
spectrogram_data = hstack((spectrogram_data[:,1:],
transpose([spectrum])))
self.spectrogram_plotdata.set_data('imagedata', spectrogram_data)
self.spectrum_plot.request_redraw()
def onTimer(self, *args):
ta = time.time()
time_now = time.time()
global time_last
#print (time_now - time_last)*1000.0,TIMER_PERIOD,(
# (((time_now - time_last)*1000.0)-TIMER_PERIOD)
# /TIMER_PERIOD)
time_last = time_now
global buffer
global bufferIdx
time_, sync = get_audio_data()
if(RADAR_RANGING):
nowIdx = 0 #index into the time_ buffer. it's fresh, so zero.
#when this is nonzero, it means that 'buffer' is stale
#since the next unprocessed frame begins in time_
if(buffer == None):
#initialize the buffer
buffer = np.zeros(NUM_SAMPLES,dtype=np.float)
zerocross = (sync>0) * 1
zerocross = zerocross[1:] - zerocross[:-1]
#zerocross contains 1 where there is a rising edge and -1 where here is a falling edge
posEdges = np.where(zerocross == 1)[0]
negEdges = np.where(zerocross == -1)[0]
if posEdges.size > 0:
risingEdge = posEdges[0]
else:
risingEdge = None
frame = None
while(True): #this loop processes frames
print 'begin search for frame'
if(bufferIdx is not None):
#there's an unprocessed frame beginning in buffer at index bufferIdx
#look for a negative edge in time_
if(negEdges.size > 0):
if(posEdges.size>0):
if (negEdges[0] > posEdges[0]):
#the first zerocrossing should have been a negative edge
print 'lost synchronization'
break
#there is a valid negative edge
a = buffer[bufferIdx:]
b = time_[:negEdges[0]]
if (a.size + b.size > FRAME_LOW_THRES and a.size + b.size< FRAME_HI_THRES):
frame = np.concatenate([a,b])
print 'found frame. size: ' + str(frame.size)
self.process_frame(frame)
bufferIdx = None #buffer is now stale
nowIdx = negEdges[0]+1 #start searching for next pos. edge from here
continue;
else:
#expected a negative edge in time_ to match the last positive edge in buffer
print 'lost synchronization'
break
else:
#buffer is stale
posEdges = posEdges[np.where(posEdges > nowIdx)[0]]
if(posEdges.size > 0):
p =posEdges[0]
negEdges = negEdges[np.where(negEdges>p)[0]] #negative edges after this positive edge
if(negEdges.size>0):
#we have a complete frame
frame = time_[p:negEdges[0]]
if (frame.size > FRAME_LOW_THRES and frame.size < FRAME_HI_THRES):
print 'found frame. size: ' + str(frame.size)
self.process_frame(frame)
nowIdx = negEdges[0]+1
continue
else:
if(posEdges.size > 1):
print 'synchronization error: two consecutive positive edges'
#no more full frames. There's an incomplete frame
bufferIdx = p
break
else:
#no more edges to process.
break
assert buffer.size == time_.size
buffer = time_
else: #not doing ranging
spectrum = abs(fft(time_))[:MAX_FREQN]
self.spectrum_data.set_data('amplitude', spectrum)
self.time_data.set_data('amplitude', time_)
self.time_data.set_data('amplitude_1', sync)
spectrogram_data = self.spectrogram_plotdata.get_data('imagedata')
spectrogram_data = hstack((spectrogram_data[:,1:],
transpose([spectrum])))
self.spectrogram_plotdata.set_data('imagedata', spectrogram_data)
self.spectrum_plot.request_redraw()
tb = time.time()
#print 'total time',(tb-ta)*1000
return
#============================================================================
# Attributes to use for the plot view.
size = (900,500)
title = "Audio Spectrum"
#============================================================================
# Demo class that is used by the demo.py application.
#============================================================================
class DemoHandler(Handler):
def closed(self, info, is_ok):
""" Handles a dialog-based user interface being closed by the user.
Overridden here to stop the timer once the window is destroyed.
"""
info.object.timer.Stop()
return
class Demo(HasTraits):
plot = Instance(Component)
controller = Instance(TimerController, ())
timer = Instance(Timer)
traits_view = View(
Group(
Item('plot', editor=ComponentEditor(size=size),
show_label=False),
orientation = "vertical"),
resizable=True, title=title,
width=size[0], height=size[1],
handler=DemoHandler
)
def __init__(self, **traits):
super(Demo, self).__init__(**traits)
self.plot = _create_plot_component(self.controller)
def edit_traits(self, *args, **kws):
# Start up the timer! We should do this only when the demo actually
# starts and not when the demo object is created.
self.timer = Timer(TIMER_PERIOD, self.controller.onTimer)
return super(Demo, self).edit_traits(*args, **kws)
def configure_traits(self, *args, **kws):
# Start up the timer! We should do this only when the demo actually
# starts and not when the demo object is created.
self.timer = Timer(TIMER_PERIOD, self.controller.onTimer)
return super(Demo, self).configure_traits(*args, **kws)
popup = Demo()
#============================================================================
# Stand-alone frame to display the plot.
#============================================================================
from traits.etsconfig.api import ETSConfig
print ETSConfig.enable_toolkit
if ETSConfig.enable_toolkit == "wx":
print 'using wx'
import wx
class PlotFrame(DemoFrame):
def _create_window(self):
self.controller = TimerController()
container = _create_plot_component(self.controller)
# Bind the exit event to the onClose function which will force the
# example to close. The PyAudio package causes problems that normally
# prevent the user from closing the example using the 'X' button.
# NOTE: I believe it is sufficient to just stop the timer-Vibha.
self.Bind(wx.EVT_CLOSE, self.onClose)
# Set the timer to generate events to us
timerId = wx.NewId()
self.timer = wx.Timer(self, timerId)
self.Bind(wx.EVT_TIMER, self.controller.onTimer, id=timerId)
self.timer.Start(TIMER_PERIOD, wx.TIMER_CONTINUOUS)
# Return a window containing our plots
return Window(self, -1, component=container)
def onClose(self, event):
#sys.exit()
self.timer.Stop()
event.Skip()
elif ETSConfig.enable_toolkit == "qt4":
print 'using qt4'
from PyQt4 import QtGui, QtCore
class PlotFrame(DemoFrame):
def _create_window(self):
self.controller = TimerController()
container = _create_plot_component(self.controller)
# start a continuous timer
self.timer = QtCore.QTimer()
self.timer.timeout.connect(self.controller.onTimer)
self.timer.start(TIMER_PERIOD)
return Window(self, -1, component=container)
def closeEvent(self, event):
# stop the timer
if getattr(self, "timer", None):
self.timer.stop()
return super(PlotFrame, self).closeEvent(event)
else:
raise SystemExit('using neither wx nor qt')
def runmain():
try:
demo_main(PlotFrame, size=size, title=title)
finally:
if _stream is not None:
_stream.close()
if _wavefd is not None:
_wavefd.close()
if __name__ == "__main__":
import cProfile
#cProfile.run('onTimer()')
runmain()