-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathkalman.c
130 lines (109 loc) · 4.19 KB
/
kalman.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/* Kalman filters. */
#include "kalman.h"
KalmanFilter alloc_filter(int state_dimension,
int observation_dimension) {
KalmanFilter f;
f.timestep = 0;
f.state_dimension = state_dimension;
f.observation_dimension = observation_dimension;
f.state_transition = alloc_matrix(state_dimension,
state_dimension);
f.observation_model = alloc_matrix(observation_dimension,
state_dimension);
f.process_noise_covariance = alloc_matrix(state_dimension,
state_dimension);
f.observation_noise_covariance = alloc_matrix(observation_dimension,
observation_dimension);
f.observation = alloc_matrix(observation_dimension, 1);
f.predicted_state = alloc_matrix(state_dimension, 1);
f.predicted_estimate_covariance = alloc_matrix(state_dimension,
state_dimension);
f.innovation = alloc_matrix(observation_dimension, 1);
f.innovation_covariance = alloc_matrix(observation_dimension,
observation_dimension);
f.inverse_innovation_covariance = alloc_matrix(observation_dimension,
observation_dimension);
f.optimal_gain = alloc_matrix(state_dimension,
observation_dimension);
f.state_estimate = alloc_matrix(state_dimension, 1);
f.estimate_covariance = alloc_matrix(state_dimension,
state_dimension);
f.vertical_scratch = alloc_matrix(state_dimension,
observation_dimension);
f.small_square_scratch = alloc_matrix(observation_dimension,
observation_dimension);
f.big_square_scratch = alloc_matrix(state_dimension,
state_dimension);
return f;
}
void free_filter(KalmanFilter f) {
free_matrix(f.state_transition);
free_matrix(f.observation_model);
free_matrix(f.process_noise_covariance);
free_matrix(f.observation_noise_covariance);
free_matrix(f.observation);
free_matrix(f.predicted_state);
free_matrix(f.predicted_estimate_covariance);
free_matrix(f.innovation);
free_matrix(f.innovation_covariance);
free_matrix(f.inverse_innovation_covariance);
free_matrix(f.optimal_gain);
free_matrix(f.state_estimate);
free_matrix(f.estimate_covariance);
free_matrix(f.vertical_scratch);
free_matrix(f.small_square_scratch);
free_matrix(f.big_square_scratch);
}
void update(KalmanFilter f) {
predict(f);
estimate(f);
}
void predict(KalmanFilter f) {
f.timestep++;
/* Predict the state */
multiply_matrix(f.state_transition, f.state_estimate,
f.predicted_state);
/* Predict the state estimate covariance */
multiply_matrix(f.state_transition, f.estimate_covariance,
f.big_square_scratch);
multiply_by_transpose_matrix(f.big_square_scratch, f.state_transition,
f.predicted_estimate_covariance);
add_matrix(f.predicted_estimate_covariance, f.process_noise_covariance,
f.predicted_estimate_covariance);
}
void estimate(KalmanFilter f) {
/* Calculate innovation */
multiply_matrix(f.observation_model, f.predicted_state,
f.innovation);
subtract_matrix(f.observation, f.innovation,
f.innovation);
/* Calculate innovation covariance */
multiply_by_transpose_matrix(f.predicted_estimate_covariance,
f.observation_model,
f.vertical_scratch);
multiply_matrix(f.observation_model, f.vertical_scratch,
f.innovation_covariance);
add_matrix(f.innovation_covariance, f.observation_noise_covariance,
f.innovation_covariance);
/* Invert the innovation covariance.
Note: this destroys the innovation covariance.
TODO: handle inversion failure intelligently. */
destructive_invert_matrix(f.innovation_covariance,
f.inverse_innovation_covariance);
/* Calculate the optimal Kalman gain.
Note we still have a useful partial product in vertical scratch
from the innovation covariance. */
multiply_matrix(f.vertical_scratch, f.inverse_innovation_covariance,
f.optimal_gain);
/* Estimate the state */
multiply_matrix(f.optimal_gain, f.innovation,
f.state_estimate);
add_matrix(f.state_estimate, f.predicted_state,
f.state_estimate);
/* Estimate the state covariance */
multiply_matrix(f.optimal_gain, f.observation_model,
f.big_square_scratch);
subtract_from_identity_matrix(f.big_square_scratch);
multiply_matrix(f.big_square_scratch, f.predicted_estimate_covariance,
f.estimate_covariance);
}