-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathwebsocket_api.py
95 lines (84 loc) · 4.42 KB
/
websocket_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import json
from traceback import format_exc
import flask_sock
import hivemind
from flask import request as http_request
import config
from app import models, sock
from utils import safe_decode
logger = hivemind.get_logger(__file__)
@sock.route("/api/v2/generate")
def ws_api_generate(ws):
try:
request = json.loads(ws.receive(timeout=config.STEP_TIMEOUT))
assert request["type"] == "open_inference_session"
model_name = request["model"]
max_length = request["max_length"]
logger.info(f"ws.generate.open(), {model_name=}, {max_length=}, {http_request.origin=}")
model, tokenizer, backend_config = models[model_name]
if not backend_config.public_api and http_request.origin != f"{http_request.scheme}://{http_request.host}":
raise ValueError(f"We do not provide public API for {model_name} due to license restrictions")
with model.inference_session(max_length=max_length) as session:
ws.send(json.dumps({"ok": True}))
while True:
request = json.loads(ws.receive(timeout=config.STEP_TIMEOUT))
assert request["type"] == "generate"
inputs = request.get("inputs")
logger.info(f"ws.generate.step(), inputs={repr(inputs)}")
if inputs is not None:
inputs = tokenizer(inputs, return_tensors="pt")["input_ids"].to(config.DEVICE)
n_input_tokens = inputs.shape[1]
else:
n_input_tokens = 0
stop_sequence = request.get("stop_sequence")
extra_stop_sequences = request.get("extra_stop_sequences")
if extra_stop_sequences is not None:
cont_token = tokenizer(stop_sequence, return_tensors="pt")["input_ids"].to(config.DEVICE)
if cont_token.shape != (1, 1):
raise ValueError("extra_stop_sequences require stop_sequence length to be exactly 1 token")
all_outputs = ""
delta_q = []
stop = False
while not stop:
outputs = model.generate(
inputs=inputs,
do_sample=request.get("do_sample", False),
temperature=request.get("temperature"),
top_k=request.get("top_k"),
top_p=request.get("top_p"),
repetition_penalty=request.get("repetition_penalty"),
max_length=request.get("max_length"),
max_new_tokens=request.get("max_new_tokens"),
session=session,
)
delta = outputs[0, n_input_tokens:].tolist()
outputs = safe_decode(tokenizer, delta_q + delta)
inputs = None # Inputs are passed only for the 1st token of the bot's response
n_input_tokens = 0
combined = all_outputs + outputs
stop = stop_sequence is None or (
"falcon-180B" not in model_name and combined.endswith(stop_sequence)
)
if extra_stop_sequences is not None:
for seq in extra_stop_sequences:
if combined.endswith(seq):
stop = True
session.last_token_id = cont_token
if not stop and outputs[-10:].find("\ufffd") > -1:
# If there's a replacement character, keep getting more tokens
# until we can decode properly
delta_q = delta_q + delta
logger.info(f"ws.generate.append_retry(), all_outputs={repr(combined)}")
else:
all_outputs = combined
token_count = len(delta_q + delta)
delta_q = []
logger.info(f"ws.generate.step(), all_outputs={repr(all_outputs)}, stop={stop}")
ws.send(json.dumps({"ok": True, "outputs": outputs, "stop": stop, "token_count": token_count}))
except flask_sock.ConnectionClosed:
pass
except Exception:
logger.warning("ws.generate failed:", exc_info=True)
ws.send(json.dumps({"ok": False, "traceback": format_exc()}))
finally:
logger.info(f"ws.generate.close()")