-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
263 lines (192 loc) · 8.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import numpy as np
import click
import time
import math
from torch.autograd import Variable
from util.helper_functions import load_checkpoint, save_checkpoint, sequence_masks, load_best_model
from util.game_env import GameEnv
np.random.seed(0)
torch.manual_seed(0)
def train(loader, content_model, buzz_model, criterion, optimizer):
env = GameEnv(loader, content_model)
epoch_loss = 0
correct = 0
total = 0
last_total = 0
last_correct = 0
end = time.time()
batch_size = content_model.batch_size
num_batch = loader.num_batches[0] # split = 0 for train
max_seq_len = loader.max_seq_len
state_dim = env.state_dim
with click.progressbar(range(num_batch)) as batch_indexes:
for batch_i in batch_indexes:
mb_X, mb_y, mb_len, mb_buzzes, all_mask, last_mask = loader.load_next_batch(0, True)
all_mask = all_mask.flatten().float()
last_mask = last_mask.flatten().float()
outputs = content_model(mb_X, mb_len)
outputs = outputs.view(batch_size, max_seq_len, -1)
sa_values = None
with torch.no_grad():
state_feat = torch.zeros((batch_size, max_seq_len, state_dim))
player_buzz_pos = []
player_cor = []
ans_prob = outputs.softmax(dim = 2)
temp = torch.zeros((batch_size, max_seq_len, 1))
ans_prob_copy = torch.cat((temp, ans_prob), 2)[:,:,:-1]
prob_cat = torch.cat((ans_prob, ans_prob_copy), 2)
state_feat[:, :, :prob_cat.size(2)] = prob_cat
for i, mb_buzz in enumerate(mb_buzzes):
ind = prob_cat.size(2)
state_feat[i, :, ind] = torch.arange(1, max_seq_len + 1)
ind += 1
player_buzz = mb_buzz[torch.randint(len(mb_buzz), (1, 1))]
temp = torch.ones([1, player_buzz[1] - 1]).long()
other = torch.ones(max_seq_len) - temp
if player_buzz[2]:
state_feat[i, :, ind] = other
else:
state_feat[i, :, ind + 1] = other
ind += 2
state_feat[i, :(player_buzz[1] - 1), ind] = temp
ind += 1
state_feat[i, :, ind] = self.user_stats[self.player_id]['overall_acc']
state_feat[i, :, ind + 1] = self.user_stats[self.player_id]['mean_frac']
state_feat[i, :, ind + 2] = self.user_stats[self.player_id]['total_ques']
ind += 3
sa_values = buzz_model(state_feat)
mb_y = mb_y.view(-1, 1).repeat(1, max_seq_len)
weighted_loss = 0
for ts in range(max_seq_len):
ts_w = max(0.1, min(1, sa_values[:, ts, 1] - sa_values[:, ts, 0]))
loss = criterion(outputs[:, ts, :], mb_y[:, ts])
weighted_loss += loss
outputs = outputs.view(batch_size * max_seq_len, -1)
_, predicted_labels = torch.max(outputs, dim = 2)
mb_y = mb_y.flatten()
matched = (predicted_labels == mb_y).float().cpu()
correct += (all_mask * matched).sum()
total += all_mask.sum()
last_correct += (last_mask * matched).sum()
last_total += last_mask.sum()
epoch_loss += float(weighted_loss)
optimizer.zero_grad()
weighted_loss.backward()
torch.nn.utils.clip_grad_norm_(content_model.parameters(), 10)
optimizer.step()
avg_loss = epoch_loss / batch_size
avg_acc = correct / total
last_acc = last_correct / last_total
return avg_loss, avg_acc, last_acc
def validate(loader, model, criterion, split):
with torch.no_grad():
epoch_loss = 0
correct = 0
total = 0
last_total = 0
last_correct = 0
end = time.time()
batch_size = model.batch_size
num_batch = loader.num_batches[split]
max_seq_len = loader.max_seq_len
with click.progressbar(range(num_batch)) as batch_indexes:
for batch_i in batch_indexes:
mb_X, mb_y, mb_len, mb_buzzes, all_mask, last_mask = loader.load_next_batch(0, True)
all_mask = all_mask.flatten().float()
last_mask = last_mask.flatten().float()
outputs = content_model(mb_X, mb_len)
outputs = outputs.view(batch_size, max_seq_len, -1)
state_feat = torch.zeros((batch_size, max_seq_len, state_dim))
player_buzz_pos = []
player_cor = []
ans_prob = outputs.softmax(dim = 2)
temp = torch.zeros((batch_size, max_seq_len, 1))
ans_prob_copy = torch.cat((temp, ans_prob), 2)[:,:,:-1]
prob_cat = torch.cat((ans_prob, ans_prob_copy), 2)
state_feat[:, :, :prob_cat.size(2)] = prob_cat
for i, mb_buzz in enumerate(mb_buzzes):
ind = prob_cat.size(2)
state_feat[i, :, ind] = torch.arange(1, max_seq_len + 1)
ind += 1
player_buzz = mb_buzz[torch.randint(len(mb_buzz), (1, 1))]
temp = torch.ones([1, player_buzz[1] - 1]).long()
other = torch.ones(max_seq_len) - temp
if player_buzz[2]:
state_feat[i, :, ind] = other
else:
state_feat[i, :, ind + 1] = other
ind += 2
state_feat[i, :(player_buzz[1] - 1), ind] = temp
ind += 1
state_feat[i, :, ind] = self.user_stats[self.player_id]['overall_acc']
state_feat[i, :, ind + 1] = self.user_stats[self.player_id]['mean_frac']
state_feat[i, :, ind + 2] = self.user_stats[self.player_id]['total_ques']
ind += 3
sa_values = buzz_model(state_feat)
mb_y = mb_y.view(-1, 1).repeat(1, max_seq_len)
weighted_loss = 0
for ts in range(max_seq_len):
ts_w = max(0.1, min(1, sa_values[:, ts, 1] - sa_values[:, ts, 0]))
loss = criterion(outputs[:, ts, :], mb_y[:, ts])
weighted_loss += loss
outputs = outputs.view(batch_size * max_seq_len, -1)
_, predicted_labels = torch.max(outputs, dim = 2)
mb_y = mb_y.flatten()
matched = (predicted_labels == mb_y).float().cpu()
correct += (all_mask * matched).sum()
total += all_mask.sum()
last_correct += (last_mask * matched).sum()
last_total += last_mask.sum()
epoch_loss += float(weighted_loss)
avg_loss = epoch_loss / batch_size
avg_acc = correct / total
last_acc = last_correct / last_total
return avg_loss, avg_acc, last_acc
def run(loader, content_model, buzz_model, criterion, optimizer, early_stopping, early_stopping_interval, checkpoint_file, num_epochs, restore = True):
logger = [{'loss' : [], 'last_acc' : [], 'avg_acc' : []} for i in range(3)]
start_epoch = 1
min_loss = 99999999999999999
ntrial = 0
if restore:
content_model, optimizer, start_epoch, logger, min_loss = load_checkpoint(content_model, optimizer, logger, checkpoint_file)
for epoch in range(start_epoch, num_epochs + 1):
train_loss, avg_acc, last_acc = train(loader, model, criterion, optimizer)
logger[0]['loss'].append(train_loss)
logger[0]['last_acc'].append(last_acc)
logger[0]['avg_acc'].append(avg_acc)
print('On training set : Epoch: %d | Loss: %.4f | avg_acc : %.2f | last_acc : %.2f'
%(epoch, train_loss, avg_acc, last_acc))
val_loss, avg_acc, last_acc = validate(loader, model, criterion, split = 1)
logger[1]['loss'].append(val_loss)
logger[1]['last_acc'].append(last_acc)
logger[1]['avg_acc'].append(avg_acc)
is_best = False
if val_loss < min_loss:
min_loss = val_loss
is_best = True
ntrial = 0
print("Best Model Found")
else:
ntrial = ntrial + 1
if early_stopping and ntrial >= early_stopping_interval:
print("Early stopping! Validation error didn't improve since last " + str(ntrial) + " epochs")
break
print('On Validation set : Epoch: %d | Loss: %.4f | avg_acc : %.2f | last_acc : %.2f'
%(epoch, val_loss, avg_acc, last_acc))
save_checkpoint({'epoch': epoch + 1,
'content_state_dict': content_model.state_dict(),
'logger': logger,
'min_loss' : min_loss,
'optimizer' : optimizer.state_dict()}, is_best, checkpoint_file)
model = load_best_model(model, filename = 'checkpoints/best_model.pth')
test_loss, avg_acc, last_acc = validate(loader, model, criterion, split = 2)
print('On Test set(Best from validation set) Loss: %.4f | avg_acc : %.2f | last_acc : %.2f'
%(test_loss, avg_acc, last_acc))
logger[2]['loss'].append(test_loss)
logger[2]['last_acc'].append(last_acc)
logger[2]['avg_acc'].append(avg_acc)
return logger