-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscan.py
456 lines (396 loc) · 17.3 KB
/
scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import argparse
import os
import sys
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim.lr_scheduler as lr_scheduler
from seq_dataloader import data_loader
from scan_model import SCANModel
PADDING_TOKEN = '<pad>'
START_TOKEN = '<start>'
END_TOKEN = '<end>'
UNK_TOKEN = '<unk>'
def model_save(fn):
with open(fn, 'wb') as f:
torch.save([model, optimizer], f)
def model_load(fn):
global model, optimizer
with open(fn, 'rb') as f:
device = torch.device('cpu' if not args.cuda else 'cuda')
model, optimizer = torch.load(f, map_location=device)
###############################################################################
# Training code
###############################################################################
def idxs2string(idxs, vocab):
string = ""
for idx in idxs.cpu().numpy():
if idx == -1:
continue
word = "UNK" if idx > len(vocab) else vocab[idx]
if word == "<pad>":
continue
elif word == "<end>":
string += " " + word
break
else:
string += " " + word
return string
class ReprWrapper(object):
def __init__(self, val):
self.val = val
def __repr__(self):
if isinstance(self.val, list):
return "[" + repr(self.val[0]) + " " + repr(self.val[1]) + "]"
else:
if self.val is not None:
return self.val
else:
return "NONE!"
def list2tree_inorder(depth):
if depth == 0:
return [ReprWrapper(None)]
else:
left_inorder = list2tree_inorder(depth - 1)
right_inorder = list2tree_inorder(depth - 1)
midpoint = len(left_inorder) // 2
new_node = [left_inorder[midpoint], right_inorder[midpoint]]
return left_inorder + [ReprWrapper(new_node)] + right_inorder
def idxpos2tree(idxs, pos, vocab):
inorder = list2tree_inorder(args.nslot)
idxs = idxs[1:len(pos) + 1]
for i, idx in enumerate(idxs):
inorder[pos[i]].val = vocab[idx]
root = inorder[len(inorder) // 2]
return repr(root)
def example_str(inp, trg, preds, positions):
input_string = idxs2string(inp, src_id2w)
targs_string = idxs2string(trg, trg_id2w)
preds_string = idxpos2tree(preds, positions, trg_id2w)
string = ("Input : " + input_string + "\n"
"Target : " + targs_string + "\n"
"Predicted : " + preds_string)
return string
def evaluate(data_iter,
print_examples=None,
every=2000,
score='accuracy',
print_examples_pos=None):
# Turn on evaluation mode which disables dropout.
model.eval()
with torch.no_grad():
sens_same = 0
sens_count = 0
for batch, data in enumerate(data_iter):
inp, inp_len, trg, trg_len = data
inp = inp.to('cuda' if args.cuda else 'cpu')
trg = trg.to('cuda' if args.cuda else 'cpu')
if score == 'accuracy':
# Accuracy measure
preds, positions = model(inp, trg)
trg = trg.permute(1, 0)
preds = preds[:trg.size(0)]
mask = trg != trg_w2id[PADDING_TOKEN]
sens_full_match = (((preds == trg) & mask) == mask).all(dim=0)
sens_same += sens_full_match.sum()
elif score == 'first_word':
preds, positions = model(inp, trg)
trg = trg.permute(1, 0)
mask = trg != trg_w2id[PADDING_TOKEN]
sens_full_match = preds[1, :] == trg[1, :]
sens_same += sens_full_match.sum()
elif score == 'll':
nll = model(inp, trg, eval_loss=True)
positions = None
mask = trg != trg_w2id[PADDING_TOKEN]
sens_same += -nll
sens_count += mask.shape[1]
if print_examples is not None:
if (batch % every) == 0:
for i in range(mask.shape[1]):
string = example_str(inp[i], trg[:, i], preds[:, i],
positions[i])
if not sens_full_match[i]:
print(string, file=print_examples)
print(file=print_examples)
elif print_examples_pos is not None:
print(string, file=print_examples_pos)
print(file=print_examples_pos)
sens_acc = float(sens_same) / sens_count
return sens_acc
def train(eval_every=-1, eval_fun=None):
# Turn on training mode which enables dropout.
model.train()
total_loss = 0
start_time = time.time()
batch = 0
for update, data in enumerate(training_data_iter):
# print(data)
# batch_data = get_batch(next(training_data_iter))
inp, inp_len, trg, trg_len = data
inp = inp.to('cuda' if args.cuda else 'cpu')
trg = trg.to('cuda' if args.cuda else 'cpu')
batch_size = trg.size(0)
chunk_size = batch_size // args.chunks_per_batch
src_lengths = (inp != src_w2id[PADDING_TOKEN]).sum(1)
trg_lengths = (trg != trg_w2id[PADDING_TOKEN]).sum(1)
for i in range(args.chunks_per_batch):
src_chunk_lengths = src_lengths[i * chunk_size: (i+1) * chunk_size]
trg_chunk_lengths = trg_lengths[i * chunk_size: (i+1) * chunk_size]
if trg_chunk_lengths.size(0) == 0:
break
src_max_length = src_chunk_lengths.max()
trg_max_length = trg_chunk_lengths.max()
# print(idxs2string(inp[i * chunk_size, :src_max_length], src_id2w))
# print(idxs2string(trg[i * chunk_size, :trg_max_length], trg_id2w))
loss = model(
inp[i * chunk_size: (i+1) * chunk_size, :src_max_length],
trg[i * chunk_size: (i+1) * chunk_size, :trg_max_length]
)
batch += 1
loss.backward()
# print(loss)
total_loss += loss.detach().data
if batch % args.log_interval == 0 and batch > 0:
elapsed = time.time() - start_time
print(
'| epoch {:3d} '
'| {:5d} / {:5d} batches '
'| lr {:05.5f} | ms/batch {:5.2f} '
'| loss {:5.5f}'.format(
epoch,
batch,
len(training_data_iter) * args.chunks_per_batch,
optimizer.param_groups[0]['lr'],
elapsed * 1000 / args.log_interval,
total_loss.item() / batch))
# total_loss = 0
start_time = time.time()
if args.clip:
torch.nn.utils.clip_grad_norm_(params, args.clip)
optimizer.step()
optimizer.zero_grad()
if eval_every > 0 and (update + 1) % eval_every == 0:
eval_fun()
model.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='')
parser.add_argument('--src_path_train', type=str,
default='data/simple/train_wo_valid_random.src')
parser.add_argument('--trg_path_train', type=str,
default='data/simple/train_wo_valid_random.trg')
parser.add_argument('--src_path_valid', type=str,
default='data/simple/valid.random.src')
parser.add_argument('--trg_path_valid', type=str,
default='data/simple/valid.random.trg')
parser.add_argument('--src_path_test', type=str,
default='data/simple/test.src')
parser.add_argument('--trg_path_test', type=str,
default='data/simple/test.trg')
parser.add_argument('--model_file', type=str, default='model.pt')
parser.add_argument('--prod-class', type=str, default='Cell',
help='model class for generative function')
parser.add_argument('--bidirection', action='store_true',
help='use bidirection model')
parser.add_argument('--seq_len', type=int, default=100,
help='max sequence length')
parser.add_argument('--seq_len_test', type=int, default=1000,
help='max sequence length')
parser.add_argument('--emsize', type=int, default=128,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=128,
help='number of hidden units per layer')
parser.add_argument('--nslot', type=int, default=8,
help='number of memory slots')
parser.add_argument('--lr', type=float, default=3e-4,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=1,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=50,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=100, metavar='N',
help='batch size')
parser.add_argument('--chunks-per-batch', type=int, default=1)
parser.add_argument('--batch_size_test', type=int, default=64, metavar='N',
help='batch size')
parser.add_argument('--dropout', type=float, default=0.1,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--dropoutm', type=float, default=0.1,
help='dropout applied to memory (0 = no dropout)')
parser.add_argument('--dropouti', type=float, default=0.1,
help='dropout for input embedding layers (0 = no dropout)')
parser.add_argument('--dropouto', type=float, default=0.1,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--dec-leaf-dropout', type=float, default=0.1,
help='Decoder leaf transform dropout')
parser.add_argument('--dec-out-dropout', type=float, default=0.1,
help='Decoder output transform dropout')
parser.add_argument('--dec-int-dropout', type=float, default=0.1,
help='Decoder attention integration dropout')
parser.add_argument('--dec-attn-dropout', type=float, default=0.6,
help='Decoder attention dropout')
parser.add_argument('--dec-no-node-attn', action='store_false')
parser.add_argument('--dec-no-leaf-attn', action='store_false')
parser.add_argument('--encoder-type', type=str, default='OM')
parser.add_argument('--paren-open', type=str, default='[')
parser.add_argument('--paren-close', type=str, default=']')
parser.add_argument('--valid-score', type=str, default='accuracy')
parser.add_argument('--test-score', type=str, default='accuracy')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
help='report interval')
parser.add_argument('--test-only', action='store_true',
help='Test only')
parser.add_argument('--logdir', type=str, default='./models/',
help='path to save outputs')
randomhash = ''.join(str(time.time()).split('.'))
parser.add_argument('--name', type=str, default=randomhash,
help='exp name')
parser.add_argument('--wdecay', type=float, default=0.,
help='weight decay applied to all weights')
args = parser.parse_args()
if not os.path.exists(os.path.join(args.logdir, args.name)):
os.makedirs(os.path.join(args.logdir, args.name))
# Set the random seed manually for reproducibility.
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
###############################################################################
# Load data
###############################################################################
# Compute vocabuary
src_vocab = set(w.lower() for l in open(args.src_path_train)
for w in l.strip().split())
trg_vocab = set(w.lower() for l in open(args.trg_path_train)
for w in l.strip().split())
src_vocab.update(['<pad>', '<start>', '<end>', '<unk>'])
src_id2w = list(src_vocab)
src_id2w.sort()
src_w2id = {w: i for i, w in enumerate(src_id2w)}
trg_vocab.update(['<pad>', '<start>', '<end>', '<unk>'])
trg_id2w = list(trg_vocab)
trg_id2w.sort()
trg_w2id = {w: i for i, w in enumerate(trg_id2w)}
training_data_iter = data_loader.get_loader(
args.src_path_train, args.trg_path_train,
src_w2id, trg_w2id,
batch_size=args.batch_size
)
valid_data_iter = data_loader.get_loader(
args.src_path_valid, args.trg_path_valid,
src_w2id, trg_w2id,
batch_size=args.batch_size_test
)
test_dataloader = data_loader.get_loader(
args.src_path_test, args.trg_path_test,
src_w2id, trg_w2id,
batch_size=args.batch_size_test
)
args.__dict__.update({
'trg_ntoken': len(trg_id2w),
'src_ntoken': len(src_id2w),
'ninp': args.emsize,
'start_idx': src_w2id[START_TOKEN],
'end_idx': src_w2id[END_TOKEN],
'unk_idx': src_w2id[UNK_TOKEN],
'trg_padding_idx': trg_w2id[PADDING_TOKEN],
'src_padding_idx': src_w2id[PADDING_TOKEN],
'paren_open': src_w2id.get(args.paren_open, -1),
'paren_close': src_w2id.get(args.paren_close, -1),
})
model = SCANModel(args)
print(model)
criterion = nn.NLLLoss(ignore_index=trg_w2id[PADDING_TOKEN])
softmax = nn.LogSoftmax(dim=2)
if args.cuda:
model = model.cuda()
params = list(model.parameters())
total_params = sum(np.prod(x.size()) for x in model.parameters())
# assert total_params == total_params_sanity
print("TOTAL PARAMS: %d" % sum(np.prod(x.size())
for x in model.parameters()))
print('Args:', args)
print('Model total parameters:', total_params)
if not args.test_only:
print("start training")
# Loop over epochs.
lr = args.lr
stored_acc = float("-inf")
# At any point you can hit Ctrl + C to break out of training early.
def eval_test():
global stored_acc
print("Evaluating")
valid_sens_acc = evaluate(valid_data_iter,
score=args.valid_score)
test_sens_acc = evaluate(test_dataloader,
print_examples=sys.stdout,
score=args.test_score,
every=2000)
valid_acc = valid_sens_acc
print('-' * 89)
print(
'| epoch {:3d} '
'| time: {:5.2f}s '
'| ↑ valid score: {:.6f} '
'| ↑ test acc: {:.4f} '
''.format(
epoch,
(time.time() - epoch_start_time),
valid_sens_acc,
test_sens_acc,
)
)
if valid_sens_acc >= stored_acc:
model_save(args.model_file)
print('Saving model (new best validation)')
stored_acc = valid_sens_acc
print('-' * 89)
return valid_acc
try:
optimizer = None
# Ensure the optimizer is optimizing params,
# which includes both the model's weights
# as well as the criterion's weight (i.e. Adaptive Softmax)
optimizer = torch.optim.Adam(params,
lr=args.lr,
betas=(0, 0.999),
eps=1e-9,
weight_decay=args.wdecay)
scheduler = lr_scheduler.ReduceLROnPlateau(
optimizer, 'max', 0.5,
patience=1, threshold=0,
)
for epoch in range(1, args.epochs + 1):
epoch_start_time = time.time()
train()
valid_acc = eval_test()
scheduler.step(valid_acc)
if optimizer.param_groups[0]['lr'] < 1e-5:
break
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
model_load(args.model_file)
model.decoder.set_depth(args.nslot)
if args.cuda:
model = model.cuda()
if args.test_only:
print(model)
sens_acc = evaluate(test_dataloader,
score=args.test_score,
print_examples=open(args.model_file + '.neg', 'w'),
print_examples_pos=open(args.model_file + '.pos', 'w'),
every=1)
data = {'args': args.__dict__,
'parameters': total_params,
'test_acc': sens_acc}
print('-' * 89)
print('| sent acc: {:.4f} ''|\n'.format(sens_acc))