-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree_rnn.py
141 lines (120 loc) · 4.93 KB
/
tree_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
# import torch.nn.functional as F
DEBUG = False
class RNNOp(nn.Module):
def __init__(self, nhid, dropout=0.):
super(RNNOp, self).__init__()
self.op = nn.Sequential(
nn.Linear(2 * nhid, nhid),
nn.Tanh(),
nn.Dropout(dropout),
)
def forward(self, left, right):
return self.op(torch.cat([left, right], dim=-1))
class LSTMOp(nn.Module):
def __init__(self, nhid, dropout=0.):
super(LSTMOp, self).__init__()
self.transform = nn.Linear(2 * nhid, 5 * nhid)
def forward(self, left, right):
if isinstance(left, tuple):
h_left, c_left = left
else:
h_left, c_left = left, torch.zeros_like(left)
if isinstance(right, tuple):
h_right, c_right = right
else:
h_right, c_right = right, torch.zeros_like(right)
h = torch.cat([h_left, h_right], dim=-1)
i_, f1_, f2_, o_, u_ = self.transform(h).chunk(5, dim=-1)
i = torch.sigmoid(i_)
f1 = torch.sigmoid(f1_)
f2 = torch.sigmoid(f2_)
o = torch.sigmoid(o_)
u = torch.tanh(u_)
c = i * u + f1 * c_left + f2 * c_right
h = o * torch.tanh(c)
return h, c
class TreeRNN(nn.Module):
def __init__(self, ntoken, nhid, padding_idx, parens_id=(0, 1), dropout=0.0, op=LSTMOp):
super(TreeRNN, self).__init__()
self.op = op(nhid)
self.padding_idx = padding_idx
self.embedding = nn.Embedding(ntoken, nhid)
self.embedding_aux = nn.Embedding(ntoken, nhid)
self.paren_open, self.paren_close = parens_id
def forward(self, input):
lens = (input != self.padding_idx).sum(0)
# batch_idxs = torch.arange(lens.size(0), device=lens.device)
# mode = input[lens - 2, batch_idxs]
batched_root = []
batched_internal_states = []
batched_leaves = []
batched_leaves_aux = []
batched_lengths = []
for i in range(lens.size(0)):
root, internal, leaves, leaves_aux = \
self.parse(input[1:lens[i] - 1, i])
batched_root.append(root)
batched_internal_states.append(internal)
batched_leaves.append(leaves)
batched_leaves_aux.append(leaves_aux)
batched_lengths.append(leaves.size(0))
batched_root = torch.stack(batched_root)
batched_lengths = torch.tensor(batched_lengths, device=input.device)
# batched_root = self.op(batched_root, self.embedding(mode))[0]
batched_internal_states = nn.utils.rnn.pad_sequence(batched_internal_states)
batched_leaves = nn.utils.rnn.pad_sequence(batched_leaves)
batched_leaves_aux = nn.utils.rnn.pad_sequence(batched_leaves_aux)
leaves_mask = (torch.arange(batched_leaves.size(0),
device=batched_root.device)[:, None] <
batched_lengths[None, :])
internal_mask = (torch.arange(batched_internal_states.size(0),
device=batched_root.device)[:, None] <
(2 * batched_lengths - 1)[None, :])
return (batched_root,
batched_internal_states, internal_mask,
batched_leaves, batched_leaves_aux, leaves_mask)
def parse(self, sent):
leaves_emb = []
leaves_emb_aux = []
internal_states = []
stack = []
if DEBUG:
disp_stack = []
print(sent)
for idx in sent:
if idx == self.paren_close:
right = stack.pop()
left = stack.pop()
combined = self.op(left, right)
stack.append(combined)
internal_states.append(combined[0])
if DEBUG:
right = disp_stack.pop()
left = disp_stack.pop()
disp_stack.append((left, right))
else:
if idx != self.paren_open:
emb = self.embedding.weight[idx]
stack.append(emb)
internal_states.append(emb)
leaves_emb.append(emb)
leaves_emb_aux.append(self.embedding_aux.weight[idx])
if DEBUG:
disp_stack.append(idx.item())
if DEBUG:
print(disp_stack[0])
result = stack[0]
internal_states = torch.stack(internal_states)
leaves = torch.stack(leaves_emb)
leaves_aux = torch.stack(leaves_emb_aux)
if isinstance(result, tuple):
return result[0], internal_states, leaves, leaves_aux
else:
return result, internal_states, leaves, leaves_aux
if __name__ == "__main__":
tree = TreeRNN(5, 50)
print(tree(torch.Tensor([[0, 0, 2, 3, 1, 0, 2, 2, 1, 1],
[2, 4, 4, 4, 4, 4, 4, 4, 4, 4]]).long().t()))
print(tree(torch.Tensor([[2]]).long().t()))