-
-
Notifications
You must be signed in to change notification settings - Fork 30.4k
/
Copy pathdpLongestIncreasingSubsequence.js
53 lines (46 loc) · 1.88 KB
/
dpLongestIncreasingSubsequence.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/**
* Dynamic programming approach to find longest increasing subsequence.
* Complexity: O(n * n)
*
* @param {number[]} sequence
* @return {number}
*/
export default function dpLongestIncreasingSubsequence(sequence) {
// Create array with longest increasing substrings length and
// fill it with 1-s that would mean that each element of the sequence
// is itself a minimum increasing subsequence.
const lengthsArray = Array(sequence.length).fill(1);
let previousElementIndex = 0;
let currentElementIndex = 1;
while (currentElementIndex < sequence.length) {
if (sequence[previousElementIndex] < sequence[currentElementIndex]) {
// If current element is bigger then the previous one then
// current element is a part of increasing subsequence which
// length is by one bigger then the length of increasing subsequence
// for previous element.
const newLength = lengthsArray[previousElementIndex] + 1;
if (newLength > lengthsArray[currentElementIndex]) {
// Increase only if previous element would give us bigger subsequence length
// then we already have for current element.
lengthsArray[currentElementIndex] = newLength;
}
}
// Move previous element index right.
previousElementIndex += 1;
// If previous element index equals to current element index then
// shift current element right and reset previous element index to zero.
if (previousElementIndex === currentElementIndex) {
currentElementIndex += 1;
previousElementIndex = 0;
}
}
// Find the biggest element in lengthsArray.
// This number is the biggest length of increasing subsequence.
let longestIncreasingLength = 0;
for (let i = 0; i < lengthsArray.length; i += 1) {
if (lengthsArray[i] > longestIncreasingLength) {
longestIncreasingLength = lengthsArray[i];
}
}
return longestIncreasingLength;
}