Skip to content

Latest commit

 

History

History
207 lines (164 loc) · 4.74 KB

File metadata and controls

207 lines (164 loc) · 4.74 KB

English Version

题目描述

给你一个整数数组 nums 和一个整数 k ,请你返回子数组内所有元素的乘积严格小于 k 的连续子数组的数目。

 

示例 1:

输入:nums = [10,5,2,6], k = 100
输出:8
解释:8 个乘积小于 100 的子数组分别为:[10]、[5]、[2],、[6]、[10,5]、[5,2]、[2,6]、[5,2,6]。
需要注意的是 [10,5,2] 并不是乘积小于 100 的子数组。

示例 2:

输入:nums = [1,2,3], k = 0
输出:0

 

提示: 

  • 1 <= nums.length <= 3 * 104
  • 1 <= nums[i] <= 1000
  • 0 <= k <= 106

解法

方法一:双指针

我们可以用双指针维护一个滑动窗口,窗口内所有元素的乘积小于 $k$

初始时,左右指针都指向下标 0,然后不断地右移右指针,将元素加入窗口,此时判断窗口内所有元素的乘积是否大于等于 $k$,如果大于等于 $k$,则不断地左移左指针,将元素移出窗口,直到窗口内所有元素的乘积小于 $k$。然后我们记录此时的窗口大小,即为以右指针为右端点的满足条件的子数组个数,将其加入答案。

当右指针移动到数组末尾时,即可得到答案。

时间复杂度 $O(n)$,空间复杂度 $O(1)$。其中 $n$ 为数组的长度。

以下是双指针的常用算法模板:

for (int i = 0, j = 0; i < n; ++i) {
    while (j < i && check(j, i)) {
        ++j;
    }
    // 具体问题的逻辑
}

Python3

class Solution:
    def numSubarrayProductLessThanK(self, nums: List[int], k: int) -> int:
        ans, s, j = 0, 1, 0
        for i, v in enumerate(nums):
            s *= v
            while j <= i and s >= k:
                s //= nums[j]
                j += 1
            ans += i - j + 1
        return ans

Java

class Solution {
    public int numSubarrayProductLessThanK(int[] nums, int k) {
        int ans = 0;
        for (int i = 0, j = 0, s = 1; i < nums.length; ++i) {
            s *= nums[i];
            while (j <= i && s >= k) {
                s /= nums[j++];
            }
            ans += i - j + 1;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int numSubarrayProductLessThanK(vector<int>& nums, int k) {
        int ans = 0;
        for (int i = 0, j = 0, s = 1; i < nums.size(); ++i) {
            s *= nums[i];
            while (j <= i && s >= k) s /= nums[j++];
            ans += i - j + 1;
        }
        return ans;
    }
};

Go

func numSubarrayProductLessThanK(nums []int, k int) int {
	ans := 0
	for i, j, s := 0, 0, 1; i < len(nums); i++ {
		s *= nums[i]
		for ; j <= i && s >= k; j++ {
			s /= nums[j]
		}
		ans += i - j + 1
	}
	return ans
}

TypeScript

function numSubarrayProductLessThanK(nums: number[], k: number): number {
    let ans = 0;
    for (let i = 0, j = 0, s = 1; i < nums.length; ++i) {
        s *= nums[i];
        while (j <= i && s >= k) {
            s /= nums[j++];
        }
        ans += i - j + 1;
    }
    return ans;
}

Rust

impl Solution {
    pub fn num_subarray_product_less_than_k(nums: Vec<i32>, k: i32) -> i32 {
        if k <= 1 {
            return 0;
        }

        let mut res = 0;
        let mut product = 1;
        let mut i = 0;
        nums.iter()
            .enumerate()
            .for_each(|(j, v)| {
                product *= v;
                while product >= k {
                    product /= nums[i];
                    i += 1;
                }
                res += j - i + 1;
            });
        res as i32
    }
}

JavaScript

/**
 * @param {number[]} nums
 * @param {number} k
 * @return {number}
 */
var numSubarrayProductLessThanK = function (nums, k) {
    const n = nums.length;
    let ans = 0;
    let s = 1;
    for (let i = 0, j = 0; i < n; ++i) {
        s *= nums[i];
        while (j <= i && s >= k) {
            s = Math.floor(s / nums[j++]);
        }
        ans += i - j + 1;
    }
    return ans;
};

...